AU

Biomechanical Assessment of the Influence of Inlay/Onlay Design and Material on Stress Distribution in Nonvital Molars

  • Publish Date: 2021-01-12

Research Abstract:

Objectives The aim of this study was to evaluate the influence of inlays/onlays with or without pulp extension from different materials on stress distribution in endodontically treated molars by three-dimensional finite element analysis (3D FEA).

Materials and Methods We used 3D mandibular molar models in this study. The models represented mesio-occluso-distal (MOD) cavities restored by inlays, onlays that covered buccal cusps, and onlays that covered all cusps with pulp extension (modified inlay/onlay) or without pulp extension (conventional inlay/onlay). Three materials (L: lithium disilicate glass-ceramic, P: polymer-infiltrated ceramic network [PICN], and C: nanofilled composite resin) were utilized. A force of 600 N was applied vertically and obliquely. Stress distribution in FEA models was analyzed using the von Mises theory.

Publishers: