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Abstract: This study presents an advanced control system for liquid level regulation,
comparing a traditional proportional-integral-derivative (PID) controller with a fuzzy logic
controller. The system integrates a real-time monitoring and control interface, allowing
flexible adjustments for research and training applications. Unlike the PID controller, which
relies on predefined tuning parameters, the fuzzy logic controller dynamically adjusts
control actions based on system behavior, making it more suitable for processes with non-
linear dynamics. The experimental results highlight the superior performance of the fuzzy
logic controller over the PID controller. Specifically, the fuzzy logic controller achieved a
21% reduction in maximum overshoot, a 62% decrease in peak time, and an 83% reduction
in settling time. These improvements demonstrate its ability to handle process fluctuations
more efficiently and respond rapidly to changes in liquid levels. By offering enhanced
stability and adaptability, the fuzzy logic controller presents a viable alternative for liquid
level control applications. Furthermore, this research contributes to the development of
flexible and high-performance control solutions that can be implemented in both industrial
and educational settings. The proposed system serves as a cost-effective platform for hands-
on learning in control system design, reinforcing contemporary engineering education and
advancing intelligent control strategies for industrial automation.

Keywords: liquid level control; fuzzy logic controller; PID controller performance

1. Introduction
Level control systems are crucial in various industries, including petroleum, chemical

processing, water treatment, and steel manufacturing, where precise regulation of liquid
levels directly impacts process stability, safety, and efficiency. Effective level control also
influences interconnected variables such as flow and pressure, necessitating the use of
reliable control strategies, particularly in complex and non-linear environments [1]. While
proportional-integral-derivative (PID) controllers remain the dominant choice in industrial
applications due to their simplicity and cost-effectiveness, their performance can be subop-
timal in handling non-linear, time-varying, and multi-variable processes [2]. To address
these challenges, researchers have explored advanced control techniques that incorporate
artificial intelligence (AI) and machine learning (ML) to enhance system performance [3].

Recent advancements in industrial automation have led to the development of various
intelligent control methodologies that extend beyond conventional PID control. Model
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Predictive Control (MPC), for example, has gained traction for its ability to handle multi-
variable processes with constraints, improving stability in complex environments [4].
Additionally, adaptive control techniques such as gain scheduling and self-tuning reg-
ulators have been implemented to enhance PID performance in non-linear systems [5].
Reinforcement Learning (RL)-based controllers have also emerged as promising solutions,
allowing real-time adaptation to dynamic process changes without requiring an explicit
system model [6]. Fuzzy logic controllers (FLCs) have demonstrated significant potential
in addressing the limitations of traditional PID control. Unlike PID controllers that rely on
precise mathematical models, FLCs use linguistic rules and heuristic reasoning to provide
robust control in non-linear and uncertain environments [7]. Studies have shown that
integrating fuzzy logic with other intelligent control strategies, such as neural networks
and genetic algorithms, further enhances adaptability and control accuracy [8]. For instance,
a recent study by Ayyagari et al. (2019) demonstrated a hybrid fuzzy–PID approach that
reduced overshoot and settling time in complex liquid level control applications [9].

Despite these advancements, there remains a gap in the practical implementation of
adaptive control systems tailored for highly non-linear single-input/single-output (SISO)
and multi-tank processes. This study aims to bridge that gap by developing an AI-based
control system—specifically, an FLC—designed to improve the response characteristics
of liquid level control. Unlike traditional PID controllers, the FLC approach dynamically
adjusts control parameters, offering superior performance in mitigating overshoot, re-
ducing peak time, and enhancing stability. The study experimentally evaluates the PID
performance on a Level Process Station 3503, a system designed for training and industrial
simulation, allowing for precise replication of real-world operational conditions.

Additionally, this research extends beyond simulation by constructing a laboratory
model as an alternative to the Foxboro 762 cna local controller (Foxboro 762 cna, Schneider
Electric Company, Andover, MA, USA). By providing an educational and experimental
platform, this study equips students and researchers with hands-on experience in modern
control methodologies. Ultimately, this research not only validates the effectiveness of
FLC over traditional PID approaches but also contributes to the ongoing advancements in
intelligent control strategies for industrial applications. Future studies can expand upon
these findings by exploring hybrid AI-based controllers to further enhance adaptability
and efficiency in non-linear process control environments.

2. Materials and Methods
2.1. Control System Implementation

We began by studying the components of the liquid level processing platform “3503”,
followed by simulating the system using mathematical equations in MATLAB’s Simulink
library (MATLAB R2023b, Version 9.14.0, The MathWorks Inc., Natick, MA, USA). We
analyzed the system’s response under both a traditional PID controller and an artificial
intelligence controller (fuzzy logic controller) designed with MATLAB’s Fuzzy Logic Toolkit.
Next, we proceeded with the practical implementation of the proposed control system
model, utilizing WinCC Flexible (2008 SP5), Step7-Microwin (V4 SP9), PC-Access OPC (V1.0
SP2), and E-Plan (V 2.4) software. Hardware components included Siemens’s products
such as the PLC-S7-200 with an EM-235 analog expansion and a PPI/USB communication
cable, recognized for their reliability in control and automation.

The Level Process Station 3503 is designed for control systems in processes for practical
training in the measurement and control of various industrial operations [10]. It consists of
the following main components, as shown in Figure 1.
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Figure 1. Block diagram of the system.

The Foxboro 762 CNA controller was selected for its dual-loop proportional-integral-
derivative (PID) control functionality, which enabled precise regulation of interdependent
process variables such as liquid level and flow rate. Its microprocessor-based architecture
supports flexible configurations, including operation as two independent control loops
or as a single-station cascade/auto-selector system, a feature critical for accommodating
dynamic experimental conditions. The controller’s enhanced capabilities, such as its dual
auto/manual transfer station and dual 3-variable indicator, provide operational flexibility
by allowing seamless transitions between automated and manual control modes during
calibration and testing. The front-panel interface incorporates a fluorescent bar graph
display for real-time visualization of control variables (e.g., pressure, temperature) and a
numeric readout paired with an integrated keypad, enabling direct parameter adjustments,
adaptive PID tuning, and alarm threshold configuration. The controller processes analog
input signals (4–20 mA, 0–10 V) and generates corresponding analog outputs (4–20 mA) for
actuator control, ensuring alignment with the precision requirements of the experimental
setup [11].

Liquid level measurement was achieved using a Foxboro IDP10 I/A differential pres-
sure transmitter, a two-wire device that measures hydrostatic pressure across a calibrated
span of 0–500 kPa (0–92 cm level range) with an accuracy of ±0.1% of span. The transmitter
integrates a silicon piezoresistive sensor with a stainless-steel isolation diaphragm, ensur-
ing stable performance across a temperature range of −40 ◦C to 85 ◦C. Its HART protocol
compatibility facilitates remote diagnostics and configuration, eliminating the need for
external signal conditioning while providing a standardized 4–20 mA output proportional
to the measured pressure [12].

To actuate the flow control valve (CV-1), an I/P (current-to-pressure) converter trans-
lated the controller’s 4–20 mA output signal into a proportional pneumatic pressure signal
(3–15 psi/20–102 kPa), modulating the valve position to regulate liquid flow and maintain
the process variable within operational limits [13].

A centrifugal pump (24 VDC, constant speed) transferred water from the lower to the
upper tank, with operation initiated via a front-panel switch [14]. The flow control valve
(CV-1), serving as the final control element, adjusted the flow rate dynamically based on
the controller’s output signal to ensure precise level regulation [15].

2.2. Fuzzy Logic Controller Design

We used fuzzy logic for liquid level control in the tank because it can be described
linguistically, and fuzzy controllers are effective in handling non-linear systems, excelling
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in such applications [16]. Thus, a fuzzy logic controller (FLC) was chosen as an alternative
to the PID controller for liquid level control. The Mamdani inference methodology was
used in designing the inference rules for our controller, as it is the most commonly used
fuzzy methodology, providing a specific output decision that improves system stability,
increases effectiveness, and offers flexibility to varying system input values [17]. Two
inputs were defined for the fuzzy controller: the liquid level error (referred to as Level) and
the rate of change in the liquid level (referred to as Rate), with one output being the control
valve (Valve). The fuzzy logic controller was designed using the Fuzzy Logic Toolkit in the
Matlab environment.

After conducting iterative simulations and analyzing system responses, five mem-
bership functions for the liquid level error (first input variable) were defined within the
normalized range of [−1, 1]: Small, Positive, High-Positive, Negative, and High-Negative.
This configuration emerged from an empirical refinement process. Initial tests with three
membership functions (Negative, Small, Positive) resulted in oscillations and sluggish con-
vergence due to insufficient granularity in distinguishing error magnitudes. Expanding to
five functions enabled finer differentiation between small, moderate, and large deviations,
improving the controller’s ability to apply context-sensitive corrections (e.g., aggressive
adjustments for High-Negative or High-Positive errors and subtle refinements near the
setpoint). The normalized range and partitioning were informed by observed system
dynamics, operational constraints, and iterative validation against step and disturbance
responses, as shown in Table 1.

Table 1. Fuzzy ranges of the first input variable of the fuzzy controller.

Linguistic Expression Liquid Level Error Range

(HN) High-Negative [−1 −1 −0.8 −0.4]

(N) Negative [−0.8 −0.4 0]

(S) Small [−0.2 0 0.2]

(P) Positive [0 0.4 0.8]

(HP) High-Positive [0.4 0.8 1 1]

Similarly, after conducting tests and analyzing the response, three membership func-
tions for the second input variable (rate of level change) were defined within the range of
[−0.1, 0.1]: Small, Positive, and Negative. These ranges were selected based on experience
and understanding of the operational mechanism, as shown in Table 2.

Table 2. Fuzzy ranges of the second input variable of the fuzzy controller.

Linguistic Expression Error Rate Range

(N) Negative [−0.1 −0.1 −0.08 0]

(S) Small [−0.08 0 0.08]

(P) Positive [0 0.08 0.1 0.1]

In the same manner, after testing the controller’s response, five membership functions
for the output variable (control valve CV-1) were defined within the range of [−1, 1]:
Close-Fast, Close-Slow, No-Change, Open-Low, and Open-Fast, as shown in Table 3.
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Table 3. Fuzzy ranges of the output variable of the fuzzy controller.

Linguistic Expression Output Variable Range

(CF) Close-Fast [−1 −1 −0.84 −0.36]

(CL) Close-Low [−0.84 −0.36 0]

(NC) No-Change [−0.3653 −0.005291 0.3547]

(OL) Open-Low [0 0.36 0.84]

(OF) Open-Fast [0.12 0.84 1 1]

The differing ranges for the liquid level error ([−1, 1]) and rate of level change
([−0.1, 0.1]) stem from their distinct roles in the control logic and their empirical nor-
malization. The level error range represents the normalized percentage deviation from
the setpoint (e.g., −1 = maximum allowable negative deviation, +1 = maximum positive
deviation). This normalization standardizes the input across operational scenarios. Con-
versely, the narrower rate range ([−0.1, 0.1]) was derived directly from observed system
behavior. During testing, the rate of level change rarely exceeded ±0.1 per unit time
(normalized) under both transient and steady-state conditions. This tighter range ensures
higher sensitivity to small rate fluctuations, enabling the controller to detect gradual drifts
early. Crucially, scaling parameters map raw sensor data (e.g., level in meters, rate in m/s)
to these normalized ranges, ensuring proportional significance. For instance, a small rate
value (e.g., 0.05) within the [−0.1, 0.1] range is amplified by its scaling gain to have a mean-
ingful influence on the control signal, balancing resolution, and stability. The magnitudes
of the ranges themselves do not dictate the output; rather, the relative scaling ensures both
inputs contribute appropriately to the rule-based decisions.

The design of the fuzzy logic controller was based on the inference rules specified
in the MATLAB/Fuzzy Rule Editor, using the Mamdani inference method, as previously
mentioned. The continuous level variables and their rates were first mapped to five distinct
membership functions, representing linguistic terms such as Very Low, Low, Medium,
High, and Very High. This mapping process involved defining appropriate triangular
membership functions to capture the dynamic range of the input variables accurately.

For any possible values of the fuzzy controller’s inputs, the outputs depend on these
inference rules, which interpret the fuzzy sets derived from the continuous inputs. In the
proposed design, the maximum number of inference rules is 15, as the total number of
rules equals the product of the number of membership functions for the input variables.
Figure 2 illustrates the designed inference rules in the MATLAB Rule Editor, reflecting how
different combinations of membership functions influence the controller’s output.
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The Matlab/Simulink toolbox was used to design a comprehensive model of the Level
Processing Platform with a PID controller and an artificial intelligence controller (fuzzy
logic controller) designed using the FIS Editor tool. Equation (1) describes the relationship
between the level and the incoming and outgoing flow rates. For the level to remain
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constant, the incoming flow rate must equal the outgoing flow rate. The level increases
when the incoming flow rate is greater than the outgoing flow rate and decreases when the
outgoing flow rate is greater than the incoming flow rate.

A
dH
dt

= Qin − Qout (1)

where
A: Base area of the tank m2.
H: liquid level in the tank m.
Qin: Incoming flow m3/s.
Qout: Outgoing flow m3/s.
The resulting equation yields the following equation:

H(s) =

[
Qin(s)− a

√
2 × g × H(s)

]
A × S

(2)

Equation (2) represents the Laplace–domain relationship between the liquid level and
flow rate, adopted from the foundational model by Setiawan [16]. Figure 2 illustrates the
corresponding Simulink implementation of this equation, depicting the functional block
diagram of the tank system with incoming and outgoing flow rates. For brevity, detailed
derivations of the governing equations are omitted here, as they align with standard liquid
level control dynamics thoroughly characterized [16].

The pump in the studied system has a constant capacity and cannot be controlled
in terms of speed; thus, the incoming flow rate provided by the pump is fixed when
operational. According to the pump’s technical specifications, the flow rate corresponding
to the tank height is 0.00245 [m3/s]. However, the incoming flow rate can be controlled
from a minimum to a maximum value by adjusting the control valve opening, which is
connected in series with the pump. When the valve is fully closed, the incoming flow rate
is zero, and when it is fully open, it allows the maximum flow rate to pass to the tank.
Therefore, the pump will be represented by a constant, which is the maximum flow rate,
and the control valve will be represented by an integrator with minimum and maximum
value limits (0–1) and an initial valve opening value.

The “Fuzzy Controller with Rule viewer” block was used to represent the fuzzy logic
controller in the Simulink environment. This block has two inputs: the first is the liquid
level error (error), and the second is the rate of change of the liquid level (rate of level).
It has a single output, which is the control valve opening, and serves as the input for the
control valve. To integrate the system designed using the “FIS Editor” tool with the “Fuzzy
Controller with Rule viewer” block, the designed system is saved and exported to the
workspace, then opened and invoked in the properties window of the block. Figure 3
illustrates the final construction of the designed model after setting the PID controller
parameters obtained through the Ziegler–Nichols tuning method.

We implemented the system practically, replacing the platform controller with the
Siemens PLC-S7-200 and the analog expansion EM-235. The ladder logic language was
used to design the programming code for the system in the “Step7-Microwin” environ-
ment, ensuring control for both the open-loop and closed-loop configurations of the Level
Processing Platform (3503). The PID controller was designed using the “PID Wizard” and
integrated into the closed-loop mode within a subroutine, which was then called within
the main program using interrupts.

The proposed system requires a monitoring and data collection program to enhance
the control system and achieve its intended purpose. To accomplish this, we used WinCC
Flexible from Siemens due to its extensive capabilities and widespread use with many
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programmable control systems and industrial applications. Interactive graphical user inter-
faces (HMI) were designed to allow selection of the control type, display and modification
of PID controller parameters, and visualization of key parameters such as liquid level,
valve opening, setpoint value, and actual value. Data are stored in an Excel file, and all
response curves are displayed, as shown in Figures 4 and 5.

OPC technology is a Microsoft standard that enables industrial applications to ex-
change data on a single or multiple computers using a “Client-Server” architecture, over-
coming compatibility issues between control system components [15]. This technology
creates an intermediary interface independent of the connected device type, allowing users
to integrate various hardware and software through an appropriate OPC program [16].
Figure 6 depicts the designed and implemented laboratory model.
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different components of the control system: sensors are shown in blue, control loops in red, and the
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Figure 6. Designed and implemented models.

3. Results
The model shown in Figure 7 was extensively tested using both the fuzzy logic

controller (FLC) and the PID controller to evaluate performance under identical conditions.
The PID controller parameters were determined using the Ziegler–Nichols tuning method,
with values set at Kp = 0.48, Ki = 0.021, and Kd = 4.408. Two reference levels were employed
during testing, the first at 0.7 and the second at 0.3, alternating at a constant frequency of
0.003 Hz, in line with the technical specifications of the studied system. These specifications
are detailed in Table 4.
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Figure 7. System response curve for both the fuzzy logic controller (FLC) and PID controller, tested
under identical conditions. The PID controller parameters were determined using the Ziegler–Nichols
tuning method with Kp = 0.48, Ki = 0.021, and Kd = 4.408. Two reference levels, 0.7 and 0.3, were
alternated during testing to evaluate system performance.

Table 4. Technical specifications of the studied system.

Tank Height (H) Maximum Pump
Flow Rate Tank Base Area (A) Drain Outlet Area (a)

0.92 m 0.00245 m3/s 0.0324 m2 0.0005 m2

Figure 8 illustrates the system’s response curve under the control of the PID controller,
highlighting its performance during transitions between the reference levels. The frequency
of 0.003 Hz was chosen to allow sufficient time for the system to respond to changes and
for the control action to stabilize during each test cycle. The results revealed that the
PID controller provided adequate control but exhibited notable limitations, particularly
during rapid fluctuations or when dealing with non-linear dynamics. These performance
characteristics are influenced by the Ziegler–Nichols tuning method, which, while widely
used, may not always yield optimal parameters for highly dynamic systems. The observed
overshoot and undershoot reflect inherent challenges in PID control for such applications.
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Figure 8. System response curve showing the performance of the fuzzy logic controller (FLC). The
curve illustrates how the FLC manages the system’s behavior in response to varying inputs, highlight-
ing its ability to adjust control parameters and maintain stability across different operating conditions.

Figure 8 shows the system response curve when using the fuzzy logic controller.
Table 5 presents the quality indicators for the system response curves when using the PID
controller and the fuzzy logic controller.
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Table 5. Quality indicators for the system response curves when using the PID controller and the
fuzzy logic controller.

Steady-State Error% Time to Reach Peak
Magnitude (s) Settling Time (s) Maximum

Overshoot% The Used Controller

None None 35 None Fuzzy logic controller
None 62 192 23.4 PID Ziegler–Nichols

In contrast, the fuzzy logic controller was tested using the MATLAB Fuzzy Logic
Toolkit, leveraging the Rule Viewer tool to analyze system behavior in real-time. Figure 9
depicts the FLC’s response during testing, showcasing the error value, error rate of change,
and valve opening under two critical conditions: the initial state and the steady state when
the reference value was achieved. The FLC demonstrated superior adaptability to changes
in the system, dynamically adjusting control actions based on performance metrics rather
than fixed set points.
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We ran the system with a reference level of 0.7 m, which matches the value used in
software testing. We monitored the system’s response using both the local controller and the
designed experimental model with the same constants used in the software tests. We also
varied the discharge valve opening to observe how the implemented model responded to
level changes while monitoring the transmitter’s level currents and output module currents.
Figure 9 shows the system response using the local platform controller. Table 6 compares
the output currents of the local platform controller and the designed model controller.

Table 6. Output currents of the local platform controller and the designed model controller.

Condition

Designed Model Foxboro

% Age Opening of Valve Tank Level% % Age Opening of Valve Tank Level%

When achieving the desired
value (0.7 m) 76.25% 83.75% 76.25% 83.75%

When achieving a new desired
value (0.5 m) 57.6% 71.25% 57.6% 71.25%

When the drain valve is opened 20.62% 100% 20.62% 100%
When achieving the desired

value after opening the
drain valve

56.87% 84.37% 56.87% 84.37%
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4. Discussion
The results obtained from the comparative testing of the fuzzy logic controller (FLC)

and the PID controller highlight significant advancements in control system performance,
emphasizing the superiority of the FLC for the studied liquid level process. The use of the
Ziegler–Nichols method for tuning the PID controller provided a standardized basis for
comparison, ensuring the validity of the observed differences in system response. This
methodology, widely recognized in control engineering, was employed to determine the
PID parameters (Kp = 0.48, Ki = 0.021, and Kd = 4.408) used in this study, ensuring a fair
and structured evaluation of both control strategies.

Despite its widespread use and established reliability in industrial applications, the
PID controller exhibited limitations when responding to rapid changes in reference levels
(e.g., from 0.7 m to 0.3 m at 0.003 Hz). The response curves (Figure 7) indicate considerable
overshoot and longer settling times, particularly under non-linear process conditions. These
performance characteristics are influenced by the inherent linear nature of PID controllers
and the constraints of the Ziegler–Nichols tuning method, which, while effective for many
applications, may not optimize performance in highly dynamic or non-linear systems.

In contrast, the fuzzy logic controller demonstrated significantly improved perfor-
mance, with reduced overshoot, peak time, and settling time (Figure 8). The FLC dynami-
cally adjusted control actions based on real-time system conditions, resulting in smoother
responses and faster stabilization. As shown in Table 2, the FLC achieved a 21% reduction
in overshoot, a 62% decrease in peak time, and an 83% reduction in settling time compared
to the PID controller. These improvements underscore the FLC’s capability to manage
complex system dynamics with greater flexibility, adaptability, and precision.

As shown in Table 2, the quality indicators reveal a marked improvement in system
behavior with the FLC. The reduction in overshoot and settling time underscores the
controller’s ability to adapt to fluctuating inputs and minimize deviations. This aligns
with previous studies that highlight the capability of fuzzy logic to handle uncertainty
and non-linearity in control systems, often outperforming traditional methods in scenarios
with dynamic and unpredictable disturbances. The differences in performance also suggest
that while Ziegler–Nichols tuning provides a structured approach, alternative or adaptive
tuning methods might improve PID controller behavior in complex environments.

The practical testing phase further corroborated the findings from software modeling.
The designed experimental model exhibited superior performance compared to the Foxboro
762 cna controller, as illustrated in Figure 9. This reinforces the importance of transitioning
from legacy systems to more adaptable solutions like the FLC. The local controller struggled
to accommodate rapid changes in discharge valve openings, leading to delayed responses
and suboptimal stability. Conversely, the designed model, utilizing the FLC, swiftly
adjusted to changes in discharge conditions, maintaining level stability and achieving
a smoother response.

These findings are in harmony with prior research advocating for the integration of
fuzzy logic in control systems, which has demonstrated similar improvements in over-
shoot and settling time when applied to non-linear control applications [16,17]. However,
discrepancies arise when comparing this study with other research employing advanced
tuning algorithms for PID controllers, such as genetic algorithms or adaptive tuning meth-
ods. In some cases, these enhanced PID techniques have been reported to approach the
performance of fuzzy logic controllers, particularly in systems with less pronounced non-
linearity. The observed conflict may stem from differences in system complexity, the nature
of disturbances, or the technical limitations of the Ziegler–Nichols tuning method used in
this study.
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The integration of fuzzy logic, as validated by the Rule Viewer tool, emphasizes
the controller’s capacity for real-time decision-making. By continuously evaluating error
values and their rate of change, the FLC adjusts valve openings dynamically, avoiding
the rigid dependency on predefined parameters characteristic of PID controllers. This
adaptability is crucial for modern control systems that require precision and robustness in
variable environments.

5. Conclusions
This study highlights the significant advantages of leveraging artificial intelligence,

particularly fuzzy logic controllers (FLCs), in enhancing liquid level control systems com-
pared to traditional PID controllers. The FLC demonstrated superior performance by
significantly reducing maximum overshoot, peak time, and settling time, thereby show-
casing its effectiveness in managing dynamic and non-linear processes where traditional
PID controllers often struggle. Despite these promising results, the practical implemen-
tation of the fuzzy controller was not achieved due to the unavailability of the Fuzzy
Control++ programming environment, which limited the study to theoretical analysis
and simulation-based validation. Future research should address this gap through experi-
mental validation to provide a direct performance comparison with PID controllers under
real-world conditions.

The integration of OPC (OLE for Process Control) technology further enhanced the
system’s functionality by enabling seamless communication and real-time data exchange
between different control components. This interoperability is critical for modern industrial
automation, where flexible and efficient data flow is essential for optimal performance.
Additionally, the developed experimental model proved to be a cost-effective and practical
alternative to proprietary controllers, reinforcing local expertise in industrial process control.
Its design emphasizes not only operational efficiency but also sustainability by reducing
dependency on expensive, vendor-specific solutions.

Beyond its industrial relevance, the model serves as a valuable educational tool,
providing students and researchers with hands-on experience in programming, system
integration, and control system design. This aligns with contemporary educational goals
focused on experiential learning and equipping future engineers with practical skills in
automation and control technologies.

Future research directions should explore the integration of advanced AI-based tech-
niques, such as neural networks, to optimize controller performance further. These tech-
niques could enhance adaptability, predictive capabilities, and overall system robustness.
Moreover, expanding the model’s application to various industrial control platforms would
improve its scalability and practical relevance. This would involve tailoring control rules
and parameters to meet the specific dynamics and requirements of different processes.

Addressing current limitations related to implementation and experimental validation
will strengthen the case for AI-driven controllers in industrial automation. Collectively,
these innovations support a forward-thinking approach to advancing both industrial
automation and technical education, promoting sustainable development driven by local
expertise and cutting-edge technologies.
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