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ABSTRACT: The delivery of drugs to specific target tissues and
cells in the brain poses a significant challenge in brain therapeutics,
primarily due to limited understanding of how nanoparticle (NP)
properties influence drug biodistribution and off-target organ
accumulation. This study addresses the limitations of previous
research by using various predictive models based on collection of
large data sets of 403 data points incorporating both numerical and
categorical features. Machine learning techniques and comprehen-
sive literature data analysis were used to develop models for
predicting NP delivery to the brain. Furthermore, the physico-
chemical properties of loaded drugs and NPs were analyzed
through a systematic analysis of pharmacodynamic parameters such
as plasma area under the curve. The analysis employed various
linear models, with a particular emphasis on linear mixed-effect models (LMEMs) that demonstrated exceptional accuracy. The
model was validated via the preparation and administration of two distinct NP formulations via the intranasal and intravenous routes.
Among the various modeling approaches, LMEMs exhibited superior performance in capturing underlying patterns. Factors such as
the release rate and molecular weight had a negative impact on brain targeting. The model also suggests a slightly positive impact on
brain targeting when the drug is a P-glycoprotein substrate.
KEYWORDS: nanoparticles, intranasal drug delivery, brain, AUC, prediction, linear regression, linear mixed-effects

1. INTRODUCTION
The treatment of diseases such as Alzheimer’s, Parkinson’s,
multiple sclerosis, epilepsy, and brain tumors is significantly
hindered by the limited permeability of the blood−brain
barrier (BBB). This barrier poses a major challenge, as less
than 1% of administered drugs can effectively reach the central
nervous system (CNS), where these diseases manifest. The
resistant nature of the BBB restricts access of drugs to the
CNS, impeding the treatment of CNS disorders. Under-
standing and overcoming the limitations of BBB permeability is
crucial for advancing therapeutic interventions in these
conditions.1,2

The structure and function of the BBB play a crucial role in
regulating the transport of molecules to the CNS.3 Molecules
can cross the BBB through various mechanisms, categorized as
passive or active transport. Whether facilitated by cells or
proteins, the receiving cell controls this molecular move-
ment.4,5 While some molecules possess specific structural
features for specialized transport, many rely on passive
diffusion as the primary mechanism of transport.6 However,
the molecular size adds complexity to drug transport, as
molecules with a molecular weight above 400−500 Da are

unlikely to passively diffuse across the BBB.1 The lipophilicity
of a molecule directly influences its permeability, as the lipid
solubility of a drug determines its ability to traverse the BBB.3,5

Several studies have investigated the relationship between the
lipophilic nature of molecules and BBB permeability. Optimal
permeation across the BBB has been suggested within a
partitioning coefficient (log P) range of 1.5−2.7.7−9 Likewise,
the log AUC brain/AUC plasma ratio has been identified as a
reliable predictor of brain permeability.4

Considering these challenges, the intranasal (IN) route of
drug delivery has shown promise in bypassing the BBB and
directly delivering drugs to the brain.10,11 This approach
reduces side effects and systemic exposure by delivering the
drug directly through the trigeminal and olfactory pathways,
requiring lower doses to achieve therapeutic effects.12 More-
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over, IN drug delivery offers practical advantages, such as ease
of administration, leading to increased patient compliance.13

However, IN drug delivery has limitations, including a high
rate of mucociliary clearance and low permeability. To
overcome these limitations, various approaches have been
employed, such as the use of chemical penetration enhancers
or formulations with mucoadhesive properties.10 Effective drug
delivery systems must evade clearance by the immune and
reticuloendothelial systems, penetrate the BBB, and reach
specific cells within the complex tissue microenvironment.11,14

Among the different strategies, nanoparticles (NPs) have
demonstrated the ability to permeate the BBB and facilitate
deep penetration of drugs into brain tissues.1,15

Various types of NPs with distinct physicochemical
properties have been investigated to improve drug delivery
to the brain.4,14,16 Despite the common practice of evaluating
the efficacy of nasal drug delivery using cell culture
experiments, in vitro uptake may not accurately reflect in
vivo conditions.17 Additionally, many studies lack comprehen-
sive characterization of the prepared NPs, and there is often
ambiguity regarding the normalization of administered doses
based on body weight in in vivo studies. Consequently, the
experimental characterization falls short in providing sufficient
support for the generation and decision-making process in
pharmaceutical development.18

Machine learning has the potential to revolutionize drug
delivery by leveraging extensive experimental data to build
predictive models. However, achieving optimal accuracy
requires selecting a high-performing model that considers
various data types, behavioral measures, and interdependencies
among features.18 In the field of nanotechnology, machine
learning has been successful in predicting various properties of
nanomaterials and their behavior in biological environments.
The absence of interpretability in these models presents a
significant constraint to making informed decisions pertaining
to the design and optimization of nanomaterials. Therefore, it
is crucial to develop models that offer interpretability to ensure
that the design and optimization of nanomaterials are carried
out seamlessly. Additionally, machine learning models heavily
rely on the quality and quantity of training data, which can lead
to suboptimal performance when faced with data significantly
different from those in the training set. Therefore, careful
consideration must be given to selecting training data and
validating models to ensure both accuracy and general-
izability.19−21

There have been studies that developed predictive models to
optimize drug delivery efficiency. Baghaei et al. employed
artificial neural networks to predict the NP size and its
correlation with the initial burst rate, considering factors such
as the molecular weight of polylactic-co-glycolic acid (PLGA),

Figure 1. Network chart showing data grouped according to the target variable while taking the ratio = 1 as a cutoff. Red for <1 and blue >1. With
respect to the cutoff for each studied feature, the resulting network chart shows the effect of administration route on AUC, Tmax, and Cmax ratios.
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solution concentration, and molecular weight of poly(vinyl
alcohol).18−21 In a different study, Gao et al. demonstrated that
combining chemical features and clinical phenotypes was more
effective in predicting BBB permeability compared to using
chemical features alone.6,22 Saini and Srivastava identified
important physicochemical properties for predicting the
biological activities of nanomaterials, including surface charge,
corona, aggregation, and solubility.23 Another study by Shafaei
and Khayati focused on using machine learning to predict the
size of NPs, considering parameters such as reaction time,
reagent concentration, Au salt-to-stabilizer concentration ratio,
intensity, wavelength, and focusing conditions, primarily in the
context of in vitro responses.24

Our study aims to determine the factors that affect the
targeting of the brain, such as the properties of drugs, the
method of preparation, and the properties of the prepared
NPs. We used various linear models in our analysis as they
provide better interpretability than other machine learning
approaches. Linear mixed-effect models (LMEMs) are
particularly useful in capturing both within-subject and
between-subject effects, allowing for the incorporation of
correlations between measurements obtained from the same
individual. These models have shown superiority over
traditional linear regression models by providing greater
flexibility and accommodating a wider range of data
structures.25

To the best of our knowledge, there are no comprehensive
studies that have utilized a large data set and incorporated a
combination of numerical and categorical features to predict
the ratio between AUC brain and AUC plasma for brain
targeting purposes. The objective of this research is to create
an accurate model that predicts drug biodistribution in the
brain and systemic circulation. This model takes into
consideration the relevant physicochemical characteristics of
the drug and nanocarriers. By leveraging this information, we
aim to develop a reliable predictive tool specifically designed
for brain targeting that would significantly reduce experimental
costs and be instrumental in the design of optimal nano-
carriers.

2. MATERIALS AND METHODS
2.1. Materials. Phenytoin (PHT) and 5,5-diphenylhydan-

toin (batch #PB/10/14) were purchased from JPN PHARMA,
India. Low-molecular-weight chitosan (batch #STBF8219 V),
acetic acid, triacetin (batch #MKBC5147), and dialysis sacks
(MWCO 12,000 Da) (batch #SLBQ 4638 V) were purchased
from Sigma-Aldrich Co., Germany. Lecithin (phosphatidylcho-
line 51.9% and phosphatidylethanolamine 12.5%) (batch no.
20617HHFEA) was supplied by Cargill Co., Germany.
Acetone and ethanol were purchased from Eurolab, UK.
Methanol and chloroform were purchased from Merck,
Germany. Poloxamer 188 was purchased from AppliChem,
Germany. Xylazine (batch no. 358518) was purchased from
Interchemie, Estonia. Ketamine hydrochloride (batch no.
50461) was purchased from Rotexmedica, Germany.
2.2. Data Collection. The study utilized data obtained

from the PubMed and Science Direct databases. The inclusion
criteria resulted in 237 research papers related to the
preparation of NPs and involved administration via the nasal
route compared to other reference routes, typically the
intravenous (IV) route. The papers were meticulously selected,
adhering to specific criteria to guarantee the inclusion of a
comprehensive analysis of the physicochemical properties of

NPs. These properties encompassed size, surface charge,
encapsulation efficiency (EE) percentage, drug localization
(core/shell), shape, and surface ligands or modifications.
Additionally, the required papers provide detailed insights into
the release studies. Furthermore, it was essential for them to
report crucial data, including exposure time, drug accumu-
lation, and in vivo evaluations, incorporating parameters such
as the area under the curve (AUC), Tmax, and Cmax in both
the plasma and brain. Inclusion criteria for eligible studies
required the primary indicator of brain targeting to be
AUCbrain/AUCplasma (Y) as well as Cmaxbrain/Cmaxplasma and
Tmaxbrain/Tmaxplasma. The features included both discrete and
continuous variables. The resulting design matrix had 403 rows
and 24 columns.
2.3. Exploratory Data Analysis. The aim of the current

study was to examine the relationship between the different
characteristics of NPs and their ability to target the brain. To
assess this relationship, Pearson’s correlation coefficient was
employed, indicating no significant correlation among the
quantitative predictors or between drug targeting efficiency
(DTE %) and direct transport percentage (DTP %) with the
studied features (Supporting Information 1). The findings
were further supported by conducting principal component
analysis (Supporting Information 2).

To address this issue, a comprehensive categorization of
features was performed based on pharmaceutical consider-
ations, and the results were presented visually. The
categorization criteria included specific cutoff values: 500 Da
for molecular weight, 0 for log P, 0.2 mg/mL for drug
solubility, and 20% for release ratio %. Additionally, a particle
size cutoff of 200 nm was chosen, as it represents the
theoretical limit for particles to cross cellular membranes.49

The NPs were further classified based on their surface charge,
categorized as either neutral or slightly negative, or positive,
which can affect their mucoadhesive properties. To facilitate
comparison among different drugs with varying doses, ratios
such as the brain to plasma AUC ratio, Cmax, and Tmax were
utilized. These categorizations and ratios are visually depicted
in Figure 1 and 3.

To ensure the quality of the data, several steps were taken.
These included the addition of missing values, removal of
duplicate data and outliers, and elimination of collinear
predictors. The final data set consisted of 133 observations
with a total of 12 predictors, including 4 qualitative and 8
quantitative predictors (Appendix 1). For certain tests, such as
LMEMs and Bayesian inference, an alternative version of the
data set was utilized. This alternative data set comprised the
same set of 12 features while retaining the complete set of 403
observations (Appendix 2).
2.4. Statistical Modeling Using Linear Regression-

Based Models. In this study, various statistical models based
on linear regression were used to analyze the data. Multiple
linear regression or ordinary least-squares (OLS) is employed
to predict dependent variables using multiple independent
variables. The coefficients obtained from linear regression
represent the linear contribution of each predictor to
predicting the response variable. The goodness of fit of the
models was assessed using the coefficient of determination
(R2). To address nonlinearity and correct response distribu-
tion, different transformations were applied to both the
predictors and the response variable. These transformations
included reciprocal, logarithmic, and Boxcox transformations
of the response variable. As for predictors, polynomial
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transformations were used for continuous variables, while
target and binary encoding techniques were applied to
categorical and binary variables, respectively.

Generalized linear models (GLMs) were also used, which
allow various residual distribution assumptions and nonidentity
links. In some cases, only significant predictors were included
in the regression models, while in other cases, the entire set of
predictors was used. The complete data set, consisting of 403
data points, was analyzed using LMEMs with random effects
for each subject, taking into account the variability among the
test animals (rats and mice). Bayesian data analysis was
conducted on the complete data set as well. The aim of
LMEMs and Bayesian statistics was to develop predictive
models for the true distributions of the AUC. Statistical
analysis was performed using software such as GraphPad Prism
version 9.0 and Python 3.9 libraries, including SciPy,50

category encoders, statsmodels,51 Bambi,52 ArviZ, NumPy,
and pandas. Data visualization was carried out using seaborn,53

and matplotlib.
2.5. Preparation of Validation NPs. To validate the

model’s predictive ability for brain targeting, two different
formulations of NPs loaded with PHT, an antiepileptic drug,
were prepared. The nanoprecepitation method, based on the
work of Yousfan et al. with some modifications,54 was used to
prepare the NPs. After extensive optimization (data not
shown), a standardized protocol was established, and the
specific amounts of ingredients were determined.

The first formulation, known as polylactic-co-glycolic acid
chitosan NPs (PLGA CS-NPs), was prepared as follows:
initially, 2.5 mg of PLGA was dissolved in 5 mL of organic
phase comprising a mixture of ethanol and acetone (40:60% v/
v). Subsequently, 1.2 mg of PHT was dissolved in 0.2 mL of
triacetin and added to the organic phase. Meanwhile, 1.25 mg
of chitosan was suspended in 10 mL of deionized water, and
the pH was adjusted using acetic acid to achieve a chitosan/
acetic acid solution with a ratio of 1:1.75 (w/v). To stabilize
the solution, a nonionic surfactant called poloxamer 188 was
added to the chitosan solution at a concentration of 0.2%. The
organic phase was then added dropwise into the aqueous phase
while stirring at a speed of 600 rpm and at room temperature.
The resulting suspension was evaporated under low pressure
using a rotary evaporator at a vacuum of 168 mbar and a
temperature of 70 °C. Subsequently, the NP suspension was
subjected to centrifugation using Viva-spin 100 kDa MWCO
centrifugal concentrators at 3214 g for 2 h at 20 °C to separate
the NPs from soluble nonreactive components. Finally, the
NPs were collected from the upper chamber of the viva-spin
tubes. The second formulation, polylactic-co-glycolic acid
lecithin NPs (PLGA L-NPs), followed a similar process with
slight modifications. In this case, 2.5 mg of PLGA and 5 mg of
lecithin were dissolved in the 5 mL organic phase consisting of
ethanol and acetone (40:60% v/v). The rest of the procedure
remained the same, including the addition of 1.2 mg of PHT
dissolved in 0.2 mL of triacetin, the inclusion of 0.2%
poloxamer 188 in the aqueous phase, and the subsequent steps.

These formulations were specifically used to evaluate the
accuracy of the model’s predictions for brain targeting. The
main goal was to assess the effectiveness of the NPs in
delivering PHT to the brain and validate the reliability of the
model in predicting these outcomes. To ensure an unbiased
evaluation, experiments involving the preparation and
evaluation of the NPs were conducted by one group, while
the statistical tests and analysis were performed by another

group of individuals. This approach prevented any exchange of
information between the two groups and introduced a double-
blinded evaluation process to minimize bias.
2.6. SEM Imaging and DLS. Scanning electron micros-

copy (SEM) imaging and dynamic light scattering (DLS)
techniques were employed to analyze the characteristics of the
prepared NPs. For SEM imaging, a VIGA II Xmu scanning
electron microscope (TESCAN, Czechia) operating at an
accelerating voltage of 20 kV was used. The morphology of the
NPs was examined by using a secondary electron detector with
a magnification of 3000 kV and a scan speed of 8.

DLS measurements were conducted to determine the
average dynamic size, size distribution, and surface charge
(zeta potential) of the NPs. A Malvern Zetasizer instrument
(UK) was utilized for these measurements. Scattered light at
an angle of 90° was collected for 2 min at a temperature of 25
°C. Each sample was subjected to 20 runs, with triplicate
measurements within each run, and the average values were
calculated.
2.7. EE Determination. To determine the EE of PHT in

the prepared NPs, the amount of free PHT in the clear filtrate
was analyzed by using high-performance thin-layer chromatog-
raphy (HP-TLC). The TLC plate was developed using a
chloroform/acetone solvent mixture (9:1, v/v), and the UV
absorption of the tracks was measured at 217 nm using an HP-
TLC scanner (CAMAG TLC scanner 3, Germany).54 The
concentration of PHT was determined from a linear standard
curve. The EE percentage was calculated by using the following
formula: encapsulation efficiency (EE %) = (WNP/WT) ×
100% where WNP is the total amount of drug in the NPs and
WT the total quantity of drug added initially during
preparation. Furthermore, the release of PHT from the NPs
was investigated by suspending the NPs in 5 mL of deionized
water and dialyzing them against 50 mL of deionized water
using dialysis sacks with a cutoff at 12 kDa. The release
medium was collected and replenished at specific time points.
The collected samples were analyzed by using HP-TLC, and
the data were plotted accordingly.
2.8. In Vivo Validation Experiments. In this study, we

conducted an investigation of the brain delivery of PHT
following the IN and IV administration of prepared NPs in
healthy female Balb/c mice. The mice used in the study were
aged 12−16 weeks, weighed between 20 and 30 g, and
randomly divided into four groups to ensure reliable and
representative results. Conscious mice were subjected to
noninvasive IN administration following the protocol
described by Hanson et al.11 Briefly, 15 μL of NP suspension
was dropped in each open nostril of a conscious mouse,
enabling the delivery of the NP suspension toward the roof of
the nasal cavity. Fifteen healthy female mice BALB/c, aged
12−16 weeks, and weighing 20−30 g were randomly divided
into five groups. NPs with an encapsulated dose of 7 mg of
PHT for every 1 mL of NP suspension were administered
through the nasal cavity (15 μL in each nostril) or were
injected in 100 μL of PBS via a single tail vein (IV). At 5 min,
15 min, 1 h, 4 h, and 24 h after the administration, mice were
ethically euthanized using IP terminal anesthesia containing
87.5 and 12.5 mg/kg ketamine and xylazine, respectively.

Blood samples were taken by open cardiac puncture, and the
brain was then isolated and weighed. The concentration of
PHT in biological tissues was measured using Sykam HPLC
with a UV/vis detector, Germany. The analysis was conducted
using methanol/water (55:45) as the mobile phase, C8 (4.6
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250 mm; 5 mm) as the stationary phase, 40 °C, 1 mL min−1

flow rate, and the resolved peaks were measured at 210 nm
wavelength.

3. RESULTS AND DISCUSSION
3.1. Data Extraction and Identification of Critical

Factors. A meticulous selection process was undertaken to
identify a set of 23 significant factors, previously established in
studies, that are closely linked to the properties of drug

encapsulation and the methods employed for the preparation
of NPs.26−28 The relevant drug properties were obtained from
the Drugbank database.29 The essential features included 5
variables related to the drug (i.e., molecular weight (Mw), log
P, pKa, solubility mg/mL, and whether the drug is P-gp
substrate), 11 variables related to the preparation method (i.e.,
drug-carrier ratio, drug position, structural component i,
structural component ii, number of components, carrier
nature, preparation method, structural component’s solvent,

Figure 2. Krona chart showing the subgrouping of the data from the mined studies.

Table 1. R2 Scores and Normality of Residuals for the Tested Transformations of X and Y that Resulted from MLR (IV
Administration)

IV administration X X2 X3

Y R2 0.7446 0.8298 0.8218
normality of residuals Anderson−Darling (A2*) D’Agostino−Pearson omnibus (K2) Anderson−Darling (A2*)

1/Y R2 0.787 0.8807 0.8806
normality of residuals D’Agostino−Pearson omnibus (K2) Kolmogorov−Smirnov (distance) none

log(Y) R2 0.8276 0.8753 0.8769
normality of residuals D’Agostino−Pearson omnibus (K2) Kolmogorov−Smirnov (distance) Kolmogorov−Smirnov (distance)

Table 2. R2 Scores and Normality of Residuals for the Tested Transforms of X and Y that Resulted from MLR (IN
Administration)

IN administration X X2 X3

Y R2 0.6895 0.7398 0.7801
normality of residuals D’Agostino−Pearson omnibus (K2) D’Agostino−Pearson omnibus (K2) none

1/Y R2 0.5546 0.7122 0.6895
normality of residuals none Kolmogorov−Smirnov (distance) Kolmogorov−Smirnov (distance)

log(Y) R2 0.6237 0.7320 0.7445
normality of residuals Kolmogorov−Smirnov (distance) Kolmogorov−Smirnov (distance) Shapiro−Wilk (W)
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stabilizer, separation method, targeting ligands), and 7
variables related to the physicochemical properties of prepared
NPs (i.e., size (nm) zeta potential (μV), PDI, EE %, NPs’
shape, release rate %) as illustrated in Figure 2. The responses
included AUCbrain/AUCplasma (Y) as the primary indicator of
brain targeting, Cmaxbrain/Cmaxplasma, and Tmaxbrain/
Tmaxplasma. The features consisted of discrete variables and
continuous variables. The resulting design matrix consisted of
403 rows and 24 columns.
3.2. Statistical Analysis. 3.2.1. Multivariate Linear

Regression. A multilinear regression analysis was performed
to evaluate factors that affect brain targeting ability of NPs
administered via the IV and the IN routes. The analysis
included 8 dependent variables, transformations of the
response variable (Y) and polynomial transformations of the
predictor variables (X). These statistical tools were applied to
achieve residual homoscedasticity, normality, and linearity, as
presented in Tables 1 and 2. Predictors with coefficients having
p-values below 0.05 were used for predictions.

For IV administration, R2 values greater than 0.85 were
obtained, specifically 0.8769 and 0.8753 for X3 and X2 with log
Y, respectively (Table 1). The analysis identified zeta potential,
drug/carrier ratio, and release rate % as potential predictors for
the brain targeting ability of NPs following IV administration.
These factors play a crucial role in the interaction of NPs with
the in vivo environment and their ability to target the
brain.30,31 Similarly, for IN administration, R2 values exceeding
0.7 were achieved, specifically 0.7445 and 0.7320 for X3 and X2

with log Y, respectively (Table 2). A variety of factors,
including molecular weight, drug solubility, log P, size
(nanometers), and zeta potential (μV), were found to
influence the brain targeting pattern after IN administration.
The measured properties of the prepared NPs and the
coefficient estimates in Table 3 show a summary of

correlations between these factors and the brain targeting
response.

3.2.2. Ordinary Least Squares. In this approach, there are
two key differences compared to multivariate linear regression
(MLR) analysis. First, categorical variables were target
encoded, allowing for their inclusion in the analysis. This
resulted in a design matrix with 12 predictors. Second, the
administration routes were not separated. Additionally, various
predictor transformations and interactions were explored, and
response transformations, such as Boxcox and log, were applied
to meet the assumptions of OLS. The models were evaluated
using adjusted R2 and AIC.

Table 4 shows that several models achieved adjusted R2

scores of approximately 0.75 or higher along with low AIC
scores and mean square error (MSE) values. These models
included 2-way interactions, indicating that the predictive
power of the predictors increases when they interact, especially
considering that none of the predictors had a direct correlation
with the response variable. Furthermore, the inclusion of
target-encoded categorical variables resulted in highly adjusted
R2 values. However, the combination of administration routes
led to an improvement over the MLR model but increased the
complexity of the model. The response variable displayed a
positive linear relationship with the molecular weight of the
encapsulated drug. In contrast, a notable negative linear
relationship was observed for the weight/comp 1 interaction.
This negative effect was inverted due to the negative mean of
the target encoded comp1 variable. The combination of release
and molecular weight had a negative impact on the response
variable, as shown in Figure 3A.

3.2.3. Generalized Linear Models. In this analysis, we used
the same design matrix as in the OLS model, but this time we
did not apply any response transformations. Instead, we tested
different residual distribution assumptions and used the log-
link in conjunction with Gaussian residual assumption. We

Table 3. Coefficient Estimates from the MLR Analysis across 4 Models: Two Models per Polynomial Transformation of X and
Two Models per Administration Route

X3 + log(Y) IN X2 + log(Y) IN X3 + log(Y) IV X2 + log(Y) IV

intercept −2.193 −0.128 −0.794 0.093
molecular weight 0.01119
release −0.329
molecular weight*solubility −0.03215 −0.02784
solubility*zeta potential −0.04813 −0.0431
solubility*release 0.5133 0.534 0.0325
size*zeta potential 0.0001244
zeta potential*release −0.001369 −0.0012 0.0325 0.0325
log(P)*size 0.0028
size*release 0.000541
release2̂ 0.00624
release3̂ 0.000242

Table 4. Results from the OLS Experiments and Fitted Models

model R2 adj. R2 MSE AIC
model

dof
prob

(Jarque−Bera)
conditional

number
(Breusch−Pagan)

p-value

OLS 0.419 0.361 363.3 12 1.13 × 10−12 8.75 × 103 0.0037
OLS + Boxcox Y transform 0.503 0.454 347.7 12 0.9 8.75 × 103 0.089
OLS + Boxcox +2-way interactions 0.896 0.745 0.339 272.0 78 0.335 7.08 × 107 0.17
OLS + 2-way interactions 0.849 0.631 0.472 315.9 78 2.12 × 10−6 7.08 × 107 0.91
OLS + log Y + 2-way interactions 0.913 0.788 0.469 315.1 78 0.172 7.08 × 107 0.133
OLS + log Y + 2-way interactions − X

transformations
0.958 0.576 0.543 227.0 119 0.00 1.03 × 1016 1
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Figure 3. A,B,D) Coefficient estimates of the significant descriptors in different models. The values were normalized to assert the input space scale
invariance. Di through Diii showing AUC means per type of comp 1, comp 2, and route. (C) Posterior distribution characteristic of the descriptor
coefficients after Bayesian analysis.

Table 5. Results from the GLM Experiments and Fitted Models

model pseudo R2 MSE AIC deviance model dof (Breusch−Pagan) p-value

GLM (Tweedie) 0.1085 nan 12.55 78 0.97
GLM (γ) 0.910 0.1279 230.664 33.395 78 0.99
GLM (Gaussian + log link) 0.99 0.0796 239.739 10.588 78 0.98
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included the encoded categorical variables and 2-way
interactions, as before. In this case, we used the pseudo-R2

metric to evaluate the models. Table 5 shows that the γ
distribution and the Gaussian distribution with a log-link
achieved pseudo-R2 scores of 0.91 and 0.99, respectively. The
GLM models outperformed the OLS models, as indicated by
the improved AIC, R2, and MSE scores. This improvement can
be attributed to assuming the correct distribution, as it allows
the residuals to naturally follow the assumed distribution,
rather than transforming non-normal residuals into normal
ones. Regarding the log-link approach, it differs from the OLS
model with a log Y transformation in that it takes the logarithm
of the mean, while the latter takes the mean of the logarithms.
Figure 3B illustrates the main positive effects observed for
weight, log P, solubility, PgP, drug carrier ratio, and release. On
the other hand, the size and position variables exhibited
negative effects.

3.2.4. Linear Mixed Effects Models. In the analysis using
LMEM, we employed a different design matrix that included
all 403 observations. To account for repeated measures, a per-
subject random intercept was added. Interactions were
included based on their superior performance observed with
GLM and OLS models. Additionally, a Boxcox response
transformation was applied, and the conditional R2 value was
used as a measure of regression fitness. Although the R2 scores
in Table 6 decreased to approximately 0.75, it is important to
consider that we are working with a larger data set that
includes additional levels for categorical variables and covers a
broader range of input values. Therefore, comparing the R2

scores of this model to those of the others is not appropriate.
Through validation, it was observed that the LMEM
outperformed the GLM. Overall, comparison between the
Boxcox and log Y transformations provided inconclusive results
in terms of fitting, but after validation, the Boxcox trans-
formation was clearly superior. The LMEM models using
Boxcox and log Y transformations exhibited nearly identical

trends in terms of positive and negative linear coefficient
estimates. An ANOVA conducted on comp1 revealed that
cyclodextrins had a significantly different mean AUC
(negative) compared to the other compounds, while
poloxamer and PVP had positive means. Regarding comp2,
cholesterol, protein, sodium alginate, polyethylene glycol
(PEG), and tween 80 had positive mean AUC values, whereas
phospholipids and solid lipid had negative mean AUC values.
In terms of the administration route, only IN showed a positive
mean AUC, as illustrated in Figure 3D.

3.2.5. Bayesian Inference. In the Bayesian inference
analysis, we employed the entire data set with the same 12
predictors used previously, incorporating the necessary
encodings. However, due to convergence issues, interactions
were not included in this approach. While normality is not a
requirement for Bayesian methods, a Boxcox transformation
was applied to achieve the homoscedasticity of the residuals.
Two models were fitted: one with a by-subject random
intercept and one without. Table 7 displays the results,
indicating that the model with the random intercept had a
lower MSE. However, during the validation process, it became
evident that this superiority did not hold when predicting
unseen data. While the models performed well, they did not
surpass the performance of the previous best models in terms
of training or validation. Nevertheless, the advantage of
Bayesian statistics lies in its ability to generate a posterior
predictive distribution. If convergence is achieved, this
distribution accurately represents the true distribution of the
response variable. Consequently, we can confidently describe
the probabilities associated with different outcomes and obtain
a generative model for the target variable. A scatter plot, shown
in Figure 3C, was generated to visualize the posterior
distribution characteristics of the descriptor coefficients
obtained from Bayesian analysis. The plot includes the mean
value and standard deviation (mean ± standard deviation) of
the coefficients.
3.3. Model Validation Using Prepared NPs and In

Vivo Assessment. In order to validate the models developed
for predicting brain targeting, two types of NPs were prepared:
PLGA L and PLGA CS NPs were loaded with PHT. These
NPs were administered to mice via IN and IV routes. Detailed
information about the drug properties, preparation method,
and physicochemical characterization of the prepared NPs can
be found in Table 8.

The analysis of drug distribution between the brain and
plasma was performed to compare the experimental results to
the predictions made by the models. Supporting Information 3
and Figure 4 present SEM photomicrographs and physico-
chemical properties of the prepared NPs, respectively,
including size, zeta potential, release profile, and biodistribu-
tion after IN and IV administration. However, specific
numerical values and data are not provided in this context.

The results showed that PLGA CS-NPs administered via IN
had a significantly higher brain drug uptake index (Y) of 2.956
compared with PLGA L-NPs with a Y of 1.028. Furthermore,
both IN formulations exhibited higher Y values compared to

Table 6. Results from the LMEM Experiments and Fitted
Models

model
conditional

R2 scale

(Lagrange
multiplier)
p-value

(normality
test)
p-value

LMEM − X
tranfsormations

0.641 6.072 0.002 1.325

LMEM + Boxcox 0.649 0.891 0.0012 0.0414
LMEM + Boxcox +

2-way interactions
0.773 0.6192 0.0003

LMEM + log Y + 2-
way interactions

0.767 0.731 4.9938

Table 7. Results from the Bayesian Approach Experiments
and Fitted Models

model MSE

Bayesian statistics + Boxcox 1.7223
Bayesian statistics + Boxcox + by subject random intercept 0.5654

Table 8. Experimental Results Showing the Validation NP Properties

NPs
drug/carrier

ratio
drug

position
structural component

(1)
structural component

(2) size (nm)
zeta

potential EE %
release
ratio % PDI

PLGA L-NPs 0.480 core PLGA phospholipids 170.630 −37.7 52.351 2.26 0.089
PLGA CS-NPs 0.480 matrix PLGA chitosan 453.100 33.4 56.412 2.95 0.338
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the IV administration (1.028 and 2.956 vs 0.329 and 0.614,
respectively). This indicates that chitosan, which acts as a
mucoadhesive and penetration enhancer due to its positive
charge interacting with the negatively charged cell membrane,
demonstrated a better brain targeting efficiency. These findings
are consistent with previous studies highlighting the effective-
ness of the IN route in overcoming the BBB limitations,
reducing peripheral side effects, and enhancing therapeutic
efficacy.10,31,32 The performance of the models was assessed by
comparing the observed values to the predictions shown in
Table 9 and Figure 5. The LMEM achieved the best overall
performance with a validation mean absolute error (MAE) of
0.197. The inclusion of 2-way interactions had a significant
positive impact on model performance. Additionally, the

Boxcox transformation outperformed the log transformation.
Although the GLM showed better performance in training, one
of the OLS models demonstrated superior performance
compared to all the GLM models. The Bayesian approach
also showed comparable performance to the other models.

Figure 3D illustrates the importance of features according to
the LMEM model. Factors such as release rate and molecular
weight had a negative impact on brain targeting.33 Drug
solubility and log P were found to be influential in predicting
BBB permeation according to Norinder,34 Haeberlein,35

Clark,36 and Wermeling et al.37 The model also suggests a
slightly positive impact on brain targeting when the drug is a P-
glycoprotein (P-gp) substrate. Furthermore, controlled release
patterns of drugs from NPs were found to have a positive effect

Figure 4. Particles size (A), zeta potential (B), and the release study (C) of PLGA L-NPs and PLGA CS-NPs using DLS and the dialysis method,
respectively. The results are represented as mean percentage ± SD (n = 3 at least). (D) Uptake and concentration−time profile in brain and plasma
following PLGA L-NPs and PLGA CS-NPs after IV and IN administration. The mean Cmax values in the brain after IN injection were found to be
markedly greater than those obtained after IV administration for both PLGA L-NPs and PLGA CS-NPs. In the plasma and brain, PLGA L-NPs
brought a faster onset of the PHT concentration. The brain AUC0−∞ after PLGA CS-NPs was higher than the PLGA L-NPs in plasma and brain.
Brain exhibited the highest concentration of PHT after the IN administration of PLGA CS-NPs, while PLGA L-NPs exhibited the highest
concentration of PHT after IV administration.
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on drug accumulation in brain tissue. These findings
emphasize the importance of considering drug solubility, P-
gp substrate status, and controlled release patterns in NP
formulations to enhance brain drug delivery and overcome
BBB limitations.38,39 Additionally, the inclusion of surfactants
and solubility enhancers, such as poloxamers, PVP, and
phospholipids (referred to as component (i)), has a significant
positive effect on brain targeting, as shown in Figure 3Di.
Another factor affecting NP performance is the coating agent
(referred to as component (ii)), as illustrated in Figure 3Dii.

Previous studies have highlighted the need for additional
solubilization strategies when delivering poorly soluble drugs
via the nasal−brain route, where penetration of the nasal
mucosa is limited.40−42 For example, viscosity-enhancing
agents like methylcellulose and sodium alginate can enhance
drug retention in the nasal cavity by slowing down the
movement of mucus.43 Furthermore, incorporating mucoadhe-
sive agents in formulations can reduce the drug passage from
the nasal cavity to the pharynx, increasing drug retention. Our
data analysis revealed the positive effects of chitosan as a
mucoadhesive,44 cholesterol as a penetration enhancer,45 and
sodium alginate as a viscosity enhancer on drug accumulation
in the brain.46 Additionally, surface coating with PEG polymers
can create stealth particles that avoid clearance of NP systems
from the bloodstream.47,48

Our study did not identify an optimal particle size for nasal−
brain drug delivery. However, the physical size of the
formulation is likely to play a crucial role in this process.
The nasal mucosa exhibits a relatively high degree of
permeation flexibility, but there may be a size limit that
restricts the passage of particles through factors such as the
diameter of olfactory nerve neurons and the primary
mechanism of entry through the cell membrane. In contrast,
when NPs are administered intravenously, they cannot freely
diffuse through the BBB. Instead, they require receptor-
mediated transport across the brain capillary endothelium to
deliver their contents to the brain parenchyma. It is also
important to consider the stability of NPs in biological fluids.
These findings are further supported by the positive effect of

IN administration on drug accumulation in the brain, as
illustrated in Figure 3Diii.

4. CONCLUSIONS
In conclusion, the development of predictive models for the
brain targeting of NPs in CNS clinical disorders is of great
importance. In this study, we addressed this challenge by
leveraging previous research and assembling a data set of NP
formation behavior investigations. Through data mining and
analysis, we selected 12 key features related to drug properties,
nanocarrier preparation, and nanocarrier properties that were
found to significantly impact brain targeting. Various linear
regression models, including multiple, generalized, and mixed
effect linear regressions, were fitted to the data to predict brain
targeting. The models were evaluated using metrics such as R2

and MAE, and their accuracy was validated against
experimental data obtained from in vivo testing of polymeric
NPs. The proposed models demonstrated a high accuracy in
predicting the brain targeting response. However, there is
room for further improvement. Future research should explore
more comprehensive tools for data-driven equation extraction,
such as SISSO, subgroup discovery, and investigate the
applicability domains of the models. Additionally, nonlinear
models with nontrivial compositions should be explored to
provide a more comprehensive understanding of the under-
lying mechanisms. By computing the outcome prior to
laboratory experiments, our models offer a cost-efficient
approach to guide the design of nanocarriers and anticipate
their behavior in complex biological environments. This
approach helps avoid unintended biological outcomes during
clinical applications. However, further advancements in
modeling techniques and the availability of a more
comprehensive data set will contribute to enhancing the
accuracy and applicability of these predictive models.

■ ASSOCIATED CONTENT
Data Availability Statement
The code for the analyses is available at https://github.com/
Introvertuoso/BrainTargeting.

Table 9. True vs Predicted Values for Each of the Prepared Validation NPs from Each of the Fitted Models of Our Statistical
Analysesa

true predicted

tested model
PLGA L

IN
PLGA CS

IN
PLGA L

IV
PLGA CS

IV
PLGA L

IN
PLGA CS

IN
PLGA L

IV
PLGA CS

IV MAE

multivariate linear + X3 − X transformations 1.104 3.46 0.043 0.54 1.028 2.956 0.329 0.614 0.05
OLS + Boxcox + 2-way interactions 0.02 1.26 −0.87 −0.45 −0.18 0.20 −0.63 −1.39 0.3
OLS + 2-way interactions 1.03 2.96 0.365 0.614 1.17 1.25 0.37 −0.342 0.6
OLS + log Y + 2-way Interactions 0.029 1.085 −1.007 −0.487 1.17 1.254 0.373 −0.342 0.7
OLS + log Y + 2-way Interactions − X

transformations
0.029 1.085 −1.007 −0.487 1.041 −5.236 0.329 −16.46 4.9

GLM (Tweedie) 1.03 2.96 0.365 0.614 −0.606 1.118 0.798 0.781 0.719
GLM (γ) 1.03 2.96 0.365 0.614 0.500 1.450 0.914 −0.960 0.766
GLM (Gaussian + log link) 1.03 2.96 0.365 0.614 0.953 0.873 0.335 0.576 0.558
LMEM 1.03 2.96 0.365 0.614 4.377 3.626 2.444 1.693 1.792
LMEM + Boxcox 0.029 1.152 −0.954 −0.474 0.892 1.106 −0.331 −0.117 0.449
LMEM + Boxcox +2-way interactions 0.029 1.152 −0.954 −0.474 0.118 1.120 −1.392 −0.883 0.197
LMEM + log Y + 2-way interactions 0.029 1.152 −0.954 −0.474 −0.05 0.908 −1.654 −1.271 0.421
Bayesian statistics + Boxcox 0.029 1.152 −0.954 −0.474 0.889 1.095 −0.347 −0.125 0.439
Bayesian statistics + Boxcox + by subject random

intercept
0.029 1.152 −0.954 −0.474 −0.759 −0.867 −1.526 −1.056 0.99

aAlong with the calculated MAE values.
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*sı Supporting Information
The Supporting Information is available free of charge at
ht tps ://pubs .acs .org/doi/10 .1021/acs .molpharma-
ceut.3c00880.

Data showing the relationships between DTP %, DTE
%, and other studied features; loading vectors’ data
showing that molecular weight and solubility exhibit
similar patterns for both administration routes, while the
other features display inverted effects; data showing that
PC scores and biplot analysis identified outliers within

the data set, suggesting their exclusion from further
analysis; eigenvalues and proportion of variance
distribution data showing a relatively even spread across
the predictors, indicating that variability in the data is
not concentrated in specific components; and correla-
tion analysis data showing weak correlations between the
principal components and response variables, indicating
limited influence of the PCs on the responses (PDF)

Physical property data (XLSX)
Physical property data (XLSX)

Figure 5. Radar graphs of the predicted AUC values from our top 6 models overladed on top of the true AUC values. The MAE values were added
to easily discern the differences between them in terms of superiority.
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