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Abstract

Healthcare systems worldwide face growing challenges, including rising costs, workforce shortages, and dispari-
ties in access and quality, particularly in low- and middle-income countries. Artificial intelligence (Al) has emerged
as a transformative tool capable of addressing these issues by enhancing diagnostics, treatment planning, patient
monitoring, and healthcare efficiency. Al's role in modern medicine spans disease detection, personalized care,
drug discovery, predictive analytics, telemedicine, and wearable health technologies. Leveraging machine learn-
ing and deep learning, Al can analyze complex data sets, including electronic health records, medical imaging,
and genomic profiles, to identify patterns, predict disease progression, and recommend optimized treatment strat-
egies. Al also has the potential to promote equity by enabling cost-effective, resource-efficient solutions in low-

resource and remote settings, such as mobile diagnostics, wearable biosensors, and lightweight algorithms. Success-
ful deployment requires addressing critical challenges, including data privacy, algorithmic bias, model interpretability,
regulatory oversight, and maintaining human clinical oversight. Emphasizing scalable, ethical, and evidence-driven
implementation, key strategies include clinician training in Al literacy, adoption of resource efficient tools, global col-
laboration, and robust regulatory frameworks to ensure transparency, safety, and accountability. By complementing
rather than replacing healthcare professionals, Al can reduce errors, optimize resources, improve patient outcomes,

and expand access to quality care. This review emphasizes the responsible integration of Al as a powerful catalyst
for innovation, sustainability, and equity in healthcare delivery worldwide.
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Introduction

The healthcare industry is undergoing a profound trans-
formation driven by escalating costs, workforce short-
ages, and increasing demands from aging populations.
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Globally, healthcare systems face critical challenges, such
as limited access to care, inefficiencies, and high expenses
[1]. These issues are particularly severe in low- and mid-
dle-income countries, where shortages of trained health-
care professionals, inadequate infrastructure, and limited
diagnostic capabilities often result in delayed disease
detection, suboptimal treatments, and poorer patient
outcomes. Addressing these challenges requires innova-
tive, scalable solutions capable of improving efficiency,
expanding access, and enhancing quality of care across
diverse healthcare environments [2].

Artificial intelligence (AI) is the study of how comput-
ers can learn to solve problems using symbolic language
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[3]. Many fields, including medicine, pharmaceutics, and
more, have benefited from its development, and it has
become a core research method for resolving issues [4]. It
offers promising tools for transforming healthcare deliv-
ery through advanced data analysis and decision sup-
port. Al systems, powered by machine learning (ML), can
process vast amounts of patient information, including
medical histories, test results, treatment responses, and
clinical guidelines, to develop personalized care strategies
[5]. These technologies assist clinicians by recommend-
ing optimal therapies based on individual health profiles
and by continuously monitoring vital signs to detect early
signs of complications. A key advantage of Al is its abil-
ity to identify hidden patterns in large data sets, enabling
predictions about disease progression, treatment out-
comes, and patient risk factors [6]. Such predictive capa-
bilities facilitate early interventions, preventive care, and
more precise allocation of resources. Despite its poten-
tial, the adoption of Al in healthcare faces significant
challenges, including ethical considerations regarding
patient privacy, data security, and mitigating algorithmic
biases arising from historical data [7].

Ensuring healthcare providers receive adequate train-
ing is critical to maximizing AI benefits, supporting
rather than replacing clinical judgment [8]. Traditional
diagnostic methods depend heavily on human exper-
tise, are susceptible to fatigue, and are subject to sub-
jective interpretation. Al enhances diagnostic accuracy
and speeds decision-making by integrating diverse data
sources, such as electronic health records, medical imag-
ing, genomic profiles, and scientific literature [9]. Deep
learning (DL) algorithms, for example, have shown
remarkable success in detecting abnormalities across
various imaging modalities, including X-rays, CT scans,
MRIs, and pathology slides [10]. While many reviews
have explored AIs applications in diagnostics, treat-
ment planning, and clinical decision support, fewer have
addressed Al’s potential to reduce healthcare disparities.
Limited research focuses on adapting Al technologies to
improve access and quality of care in underserved and
resource-constrained settings, where geographic barriers
and workforce shortages exacerbate health inequities.

This review comprehensively analyzes AI’s contribu-
tions to healthcare, emphasizing advancements in deep
learning, generative modeling, predictive analytics, and
system integration. Moreover, it highlights AI’s role in
promoting healthcare equity through adaptable, cost-
effective solutions such as telemedicine, mobile diag-
nostics, wearable biosensors, and low-computation
algorithms suitable for low-resource environments. By
examining high-resource and resource-limited con-
texts, this work aims to inform future research, policy
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decisions, and strategic implementations that harness
Al to create more equitable, accessible, and adequate
healthcare worldwide.

Need for the study

Al is rapidly transforming healthcare by enabling
advances in diagnostics, personalized medicine, treat-
ment planning, and operational efficiency. Despite
growing interest and numerous studies, existing
reviews often focus narrowly on specific applications or
technologies. In addition, there is limited examination
of Al's potential to address disparities in healthcare
access and quality across diverse resource settings. This
comprehensive review aims to fill these gaps by analyz-
ing the breadth of AI applications in medicine while
emphasizing equitable healthcare delivery. By synthe-
sizing recent advances and challenges, this study pro-
vides critical insights to guide future research, clinical
implementation, and policymaking.

Historical overview of artificial intelligence

in healthcare

The integration of Al into Healthcare has evolved sig-
nificantly since the mid-twentieth century. In 1950, Al
made its first notable contribution to medicine dur-
ing research on shifting tests. The impact of computa-
tional intelligence was further highlighted in 1975 with
the development of an early prototype study on com-
puter applications in medicine. Since then, Al’s reach
has expanded, particularly with the advent of DeepQA
software in 2007, which marked a notable advancement
in Al-driven analysis. Early applications such as com-
puter-aided detection (CAD) in endoscopy appeared
in 2010, followed By the development of Pharm-
bot software in 2015. A landmark event was the 2017
launch of a cloud-based deep learning application that
received FDA approval, signifying regulatory accept-
ance of Al tools in clinical practice. Between 2018 and
2020, numerous Al trials in gastroenterology show-
cased the growing adoption of AI, while a dramatic
transformation in pharmaceutical supply chain man-
agement further demonstrated Al's industrial impact.
The period from 2021 to 2024 saw accelerated Al diag-
nostics deployment during the COVID-19 pandemic,
advancements in personalized medicine, development
of explainable Al for clinical transparency, and integra-
tion of AI with robotic surgery and telemedicine [11].
Figure 1 illustrates the timeline of key milestones and
innovations marking the evolution of Al in healthcare,
contextualizing its growing role in modern medicine.
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Fig. 1 History of artificial intelligence in healthcare

Methodology

The methodology of this review involved a compre-
hensive and systematic search of scientific literature to
gather current evidence on the diagnostic, therapeu-
tic, and equity-oriented applications of artificial intel-
ligence in healthcare. A targeted search was carried out
across major databases, including PubMed, Scopus,
Web of Science, IEEE Xplore, and Google Scholar. Key-
words used in various combinations included “artificial
intelligence,” “machine learning,” “deep learning,” “natu-
ral language processing,” “healthcare,” “low-resource
settings,” and “health equity” Only English-language
articles published Between 2015 and 2025 were con-
sidered. Studies were selected based on their relevance
to Al applications in healthcare, with a preference for
original research, clinical trials, implementation stud-
ies, and high-impact reviews that reported measurable
clinical or operational outcomes. Exclusion criteria
included studies outside the healthcare domain, arti-
cles lacking a clear AI component, editorials, opinion
pieces, and publications without sufficient methodo-
logical or application detail. Following an initial screen-
ing of titles and abstracts, eligible articles underwent
full-text review to confirm relevance and quality. Data
were extracted regarding the Al techniques employed,
the healthcare domain addressed, target populations,
implementation settings, and reported outcomes. Spe-
cial emphasis was placed on identifying Al applica-
tions that demonstrated adaptability to low-resource
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contexts or contributed to reducing disparities in
healthcare access. The included studies were organ-
ized into thematic categories covering diagnostics,
treatment planning, oncology, drug discovery, reha-
bilitation, and digital health innovations. Within each
category, applications were further analyzed for inno-
vation, scalability, translational potential, and scientific
quality.

Foundational Al technologies

Machine learning

ML is a crucial subset of artificial intelligence that ena-
bles computers to recognize patterns and acquire knowl-
edge from data without direct programming [12]. It is
extensively utilized in healthcare for disease classifica-
tion, patient risk stratification, and outcome predic-
tion [13]. It includes various learning paradigms such as
supervised learning, wherein models are trained on data
sets with known outcomes to forecast future instances;
unsupervised learning, which identifies concealed pat-
terns in unlabeled health data to uncover new disease
subtypes or patient cohorts; and reinforcement learning,
which determines optimal treatment strategies through
trial and error, though it is less frequently employed in
clinical environments [14]. By facilitating the examina-
tion of extensive and intricate healthcare data sets, ML
enhances the accuracy and personalization of medical
decision-making.
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Deep learning

DL, a specialized subset of ML, employs multilayered
artificial neural networks to represent complex and
high-dimensional healthcare data. This methodology
has revolutionized medical AI applications owing to
its exceptional capacity to manage complexity, espe-
cially in image and sequence data analysis [15]. Con-
volutional Neural Networks (CNNs) are widely used
in medical imaging to detect and segment anomalies
in X-rays, CT scans, MRIs, and pathology slides with
exceptional precision [16]. Recurrent Neural Networks
(RNNs) and transformer topologies are proficient in
processing sequential data, including electronic health
records and physiological time-series signals, improv-
ing patient monitoring and result prediction [17].
Ongoing enhancements in these designs enhance fea-
ture extraction and predictive efficacy, enabling more
precise and automated clinical insights.

Natural language processing

Natural Language Processing (NLP) enables AI sys-
tems to comprehend, evaluate, and produce human lan-
guage, extracting valuable insights from unstructured
clinical documents, such as physicians’notes, discharge
summaries, radiology reports, and scientific publica-
tions [18]. NLP in healthcare automates the extraction
of clinical ideas, improves the identification of adverse
events, and facilitates patient communication via chat-
bots and virtual assistants [19]. Advancements in trans-
former-based NLP models, such as BERT and GPT,
have markedly enhanced the contextual comprehension
of medical language, facilitating advanced applications
like clinical trial matching and a thorough summary of
medical papers. These enhancements enable efficient
data processing and improved clinical decision-making
[20].

Generative models

Generative models, such as generative adversarial net-
works (GANs) and variational autoencoders, have
offered innovative functionalities in healthcare Al by
producing realistic synthetic data that emulates genu-
ine patient information [21]. These models are essential
for enhancing restricted data sets, especially in medical
imaging, thereby increasing the resilience and general-
izability of AI models [22]. In addition to imaging, gen-
erative models aid drug discovery by creating innovative
molecular structures and simulating patient illness tra-
jectories to predict progression patterns [23]. Although
these advancements greatly expedite the advancement of
healthcare Al, meticulous consideration is necessary to
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address issues associated with data quality, privacy, and
potential biases present in synthetic data sets.

Al applications in medicine and healthcare
Integration of Al in electronic health records

The integration of Al into electronic health records
(EHRs) represents a pivotal advancement in the man-
agement and utilization of patient data for clinical deci-
sion-making [24]. By analyzing electronic health records
and real time data, Al systems detect diseases earlier
and more accurately than traditional approaches. EHRs,
which encompass comprehensive patient histories, labo-
ratory results, and treatment documentation, generate
extensive data sets that Al systems can analyze to extract
actionable insights [25]. Al-powered EHR systems can
identify patterns related to disease onset, treatment effec-
tiveness, and patient safety issues more quickly than tra-
ditional methods. For example, algorithms can monitor
medication interactions and alert providers to potential
adverse events in real time. In addition, AI applications
in EHR can improve disease surveillance, support popu-
lation health management, and optimize resource alloca-
tion by predicting hospital admissions or staff workload
requirements [26]. ML models, such as those investigated
by Rajkomar et al.,, have Been applied to EHRs to predict
critical clinical outcomes including in-hospital mortality,
hospital readmissions, and the onset of sepsis with higher
accuracy than conventional scoring systems, Their study
notably demonstrated that DL techniques could process
unstructured EHR data, such as free-text clinical notes,
achieving predictive accuracies exceeding 85%, thereby
significantly outperforming manual methods [27]. Fried-
man et al, illustrated how NLP can extract clinically
relevant information such as symptom descriptions or
medication adjustments from physicians’ notes, thereby
supporting real-time clinical decision-making. This
capacity is particularly valuable for risk stratification,
where Al identifies high-risk individuals who may benefit
from preventive care interventions [28]. Obermeyer et al,
demonstrated the utility of predictive analytics in popula-
tion health management by identifying patients requiring
proactive care strategies [29]. In addition to clinical appli-
cations, Al-driven EHR systems contribute to operational
efficiency by automating administrative processes, such
as medical coding and billing. This reduces the documen-
tation burden on healthcare providers, as emphasized by
Davenport and Kalakota [30]. Nonetheless, several chal-
lenges hinder the seamless integration of Al into EHR
systems. These include issues of data interoperability
across disparate platforms and concerns regarding data
privacy and security, as highlighted by Abouelmehdi et al.
[31].
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Personalized medicine and treatment plans

AT’s capacity to design personalized medicine and treat-
ment regimens signifies a critical paradigm shift from
standardized clinical protocols to individualized patient
care [32]. Through the integration and analysis of patient-
specific data, such as genomic sequences, lifestyle pat-
terns, and detailed medical histories, AI systems are
capable of generating customized therapeutic strategies
[33], as shown in Fig. 2 [34]. Moreover, Al enables per-
sonalized medicine by tailoring treatments to individual
profiles. Collins et al, demonstrated that Al algorithms
can identify genetic mutations associated with rare dis-
eases and subsequently recommend targeted therapies,
enhancing patient response rates By up to 30% when
compared to conventional treatment approaches [35].
In contrast to broad spectrum interventions, these Al-
driven plans are designed to minimize adverse effects
while maximizing therapeutic efficacy, especially in
chronic conditions, such as diabetes and hypertension.
The clinical utility of Al extends further, as evidenced
by Patel et al, who illustrated the application of Al in
the real-time adjustment of insulin dosages for diabetic
patients as by utilizing data from continuous glucose
monitoring systems, Al facilitates more precise glycemic
control, thereby highlighting its transformative potential
in tailoring interventions to individual biological pro-
files [36]. In addition to therapeutic personalization, Al
enhances treatment optimization by integrating imaging
modalities with patient-specific data. Gupta et al, dem-
onstrated how Al can synthesize MRI data with genetic
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markers to develop individualized radiotherapy sched-
ules for Brain tumor patients, resulting in a 25% increase
in tumor control rates [37]. This integrative approach
allows for treatments that are not only personalized but
also dynamically responsive to evolving patient condi-
tions, offering a level of clinical adaptability that sur-
passes traditional, static treatment protocols. Beyond
tailoring treatment, Al’s predictive capacity enables early
identification of risks, laying the groundwork for proac-
tive disease prevention.

Predictive analytics for disease prevention

Predictive analytics powered by Al offers a proactive
approach to disease prevention by identifying health
risks before clinical symptoms emerge [38]. Through
the processing of population health data, environmental
variables, and behavioral trends, AI models are capable of
forecasting both disease outbreaks and individual suscep-
tibility. A study by Lee et al. demonstrated that AI could
predict influenza epidemics with 85% accuracy by ana-
lyzing social media activity and weather patterns, thereby
enabling the timely implementation of vaccination cam-
paigns [39]. In addition, Al can evaluate cardiovascular
risk using data from routine blood tests and lifestyle sur-
veys, providing clinicians with alerts that support early
interventions, such as prescribing statins or recommend-
ing dietary modifications [40]. This anticipatory capacity
represents a significant shift in healthcare, transitioning
the model from reactive treatment to pre-emptive care,
with the potential to reduce both morbidity and overall
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Fig.2 Alin acquiring and analyzing data of a patient in personalizing the treatment [34]
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healthcare expenditures. Such predictive tools comple-
ment diagnostic imaging, where AI further enhances pre-
cision in detecting and characterizing diseases.

Al in diagnostics and medical imaging

AT significantly enhances medical imaging by detecting
abnormalities with exceptional sensitivity [41]. Unlike
conventional diagnostic methods that rely heavily on
human interpretation, Al systems are capable of analyz-
ing X-rays, CT scans, and MRIs to accurately identify
conditions, such as fractures and tumors [42]. The inte-
gration of Al in the analysis of chest radiographs for Lung
cancer screening has become increasingly important,
particularly given the global prevalence of lung cancer
and the Limitations associated with traditional screen-
ing methods. Evidence indicates that AI algorithms gen-
erally achieve higher sensitivity ranging from 56.4% to
95.7% compared to radiologists, whose sensitivity ranges
from 23.2% to 76% while maintaining comparable speci-
ficity [43]. This enhanced diagnostic precision enables
earlier and more accurate detection, thereby facilitating
timely treatment and improving patient outcomes, par-
ticularly in critical conditions, such as stroke and cancer.
Al tools have surpassed radiologists in detecting cancers
from imaging, as reviewed by Litjens et al. [44]. DL meth-
ods further improve generalizability across diseases and
imaging types, reduce noise sensitivity and errors, and
may enable earlier treatments and significant clinical
advances [45]. While most studies remain preclinical, the
evolution of automated radiographic'radiomic"markers
may ultimately shift cancer diagnostics by identifying
actionable tumor abnormalities [46]. Several Al mod-
els are being used for cancer detection imaging. These
models include Prov-GigaPath [47], Owkin’s models [48],
CHIEF [49], and Google Deepmind Al [50]. The diagnos-
tic data sets generated also serve as valuable inputs for
Al-driven drug discovery pipelines, supporting the iden-
tification of novel therapeutic candidates.

Al for drug discovery

AT has transformed drug discovery by accelerating and
enhancing multiple stages of the process. Traditional
drug development is lengthy, costly, and complex, involv-
ing target identification, compound screening, lead
optimization, and preclinical and clinical trials [51, 52].
Al streamlines these steps by analyzing vast biological,
chemical, and clinical data sets, thereby reducing costs,
shortening timelines, and improving success rates. Key
applications of Al in drug discovery include target iden-
tification, compound screening, structure activity mod-
eling, novel drug design, optimization, and repurposing,
as shown in Fig. 3 [11]. Representative examples of Al
tools supporting these applications are summarized in
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Fig. 3 Process of drug discovery with the help of Al [11]

Table 1. By integrating genomics, proteomics, and molec-
ular structure data, Al can identify disease-associated
processes and promising therapeutic targets. Once iden-
tified, AI supports high-throughput virtual screening of
large chemical libraries to predict binding affinities and
prioritize compounds for testing [53]. ML models fur-
ther analyze structure activity relationships, guiding the
rational design of molecules with enhanced pharmacoki-
netics, specificity, and efficacy. Zhang et al. reported that
AT identified a novel antibiotic candidate within weeks
far faster than conventional methods by screening mil-
lions of structures against bacterial targets [54]. Lopez et
al. demonstrated how Al optimizes clinical trial design by
selecting patient cohorts most likely to respond to exper-
imental therapies, thereby increasing trial success rates
[55]. Beyond screening and optimization, Al generates
novel drug-like molecules by learning from compound
databases and experimental outcomes, thus expanding
the chemical space for discovery. It also evaluates can-
didates using safety and ADME (absorption, distribu-
tion, metabolism, and excretion) parameters to maximize
efficacy while minimizing side effects. Furthermore, Al
accelerates drug repurpose by uncovering new therapeu-
tic applications for existing compounds, reducing devel-
opment risks and time to market [56]. In clinical practice,
Al is increasingly integrated with robotic systems to
enhance the precision of therapeutic delivery, underscor-
ing its transformative role across the entire drug discov-
ery and development pipeline.

Robotics in surgery
Als integration into robotic surgery exemplifies its
transformative influence on procedural and diagnostic
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Table 1 Examples of Al tools used in drug discovery

Al Tools Description Ref
DeepChem MLP model that uses a python-based Al system to find a suitable candidate in drug discovery [571
DeepTox Software that predicts the toxicity of drugs [58]
DeepNeuralNetQSAR Python-based system driven by computational tools that aid detection of the molecular activity of com- [59]

pounds

ORGANIC A molecular generation tool that helps to create molecules with desired properties [60]
PotentialNet Uses NNs to predict binding affinity of ligands [61]

precision in modern medicine [62]. Within the surgi-
cal domain, Al enhances robotic systems by delivering
real time guidance and facilitating automation, thereby
improving outcomes in complex surgical procedures
[63]. Robotic process automation manages administra-
tive tasks, such as billing and scheduling, freeing clini-
cians to prioritize patient care. Davenport and Kalakota
showed that such automation reduces workload and
burnout, improving provider well-being and care quality
[30]. Simultaneously, AI demonstrates exceptional capa-
bilities in image analysis, interpreting medical scans with
a level of granularity often beyond human perception.
These developments are part of a broader spectrum of
Al applications that continue to redefine clinical practice
[64]. Beyond initial robotic assistance, Al-driven auto-
mation in surgery contributes to greater precision and a
reduction in human error. The adoption of robotic sur-
gery is on the rise, attributed to enhanced visualization,
improved dexterity, and superior ergonomic conditions
for surgeons [65]. In selected surgical procedures, there
is accumulating evidence supporting the non-inferiority
of robotic surgery compared to laparoscopy, along with a
reduction in patient morbidity [66]. Nevertheless, mini-
mally invasive surgery remains inherently complex and
technically demanding, characterized by higher vari-
ability and less favorable error profiles when contrasted
with those seen in industrial settings [67]. Moreover,
the introduction of new technologies into the operating
room accompanied by novel technical and non-technical
challenges may inadvertently increase the risk of human
error and, consequently, patient harm [68]. Robotic plat-
forms equipped with Al are designed to learn from each
procedure, continuously refining surgical techniques over
time and establishing new benchmarks for surgical excel-
lence [69]. Alongside surgery, Al is also transforming
pharmaceutical manufacturing by automating complex
processes and ensuring product consistency.

Al in pharmaceutical manufacturing

With the growing complexity of manufacturing processes
and the increasing demand for efficiency and enhanced
product quality, modern manufacturing systems are

progressively aiming to transfer human expertise to
machines, thereby transforming conventional manu-
facturing practices [70, 71]. The integration of Al into
manufacturing holds substantial promise for the pharma-
ceutical industry. Computational tools such as compu-
tational fluid dynamics (CFD) utilize Reynolds-averaged
Navier—Stokes (RANS) solvers to evaluate the effects
of agitation and stress within various types of equip-
ment, such as stirred tanks, thereby facilitating the auto-
mation of numerous pharmaceutical operations [72].
Similar approaches, including direct numerical simula-
tions (DNS) and large eddy simulations (LES), are also
employed to solve complex flow problems in manufactur-
ing settings [73]. One notable innovation, the Chemputer
platform, facilitates the digital automation of molecu-
lar synthesis and manufacturing by integrating a set of
standardized chemical codes and operating through
a specialized scripting language known as Chemi-
cal Assembly [59]. This platform has been successfully
applied to the synthesis and production of compounds,
such as sildenafil, diphenhydramine hydrochloride, and
rufinamide, achieving yields and purities comparable to
those obtained through manual synthesis methods [74].
In addition, Al technologies have proven effective in opti-
mizing granulation processes in granulators ranging from
25 to 600 L in capacity [75]. These systems, utilizing tech-
niques such as neuro-fuzzy logic, have been able to cor-
relate critical variables with process outcomes, ultimately
deriving polynomial equations to predict key operational
parameters, including the proportion of granulation fluid
required, impeller speed, and impeller diameter in both
geometrically similar and dissimilar granulators [76].
Pharmaceutical companies are increasingly adopting Al
technologies, reflecting a significant market expansion
from approximately US$200 million in 2015 to US$700
million in 2018, with projections estimating growth to
nearly US$5 Billion By 2024. This projected 40% increase
Between 2017 and 2024 underscores Al's potential to
transform the pharmaceutical and medical sectors.
Many companies have already invested heavily in Al and
formed strategic collaborations to develop innovative
healthcare tools. For instance, DeepMind Technologies, a
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subsidiary of Google, partnered with the Royal Free Lon-
don NHS Foundation Trust to support the management
of acute kidney injury [77, 78]. Manufacturing advances
converge with Al-powered nanorobotics, enabling highly
targeted drug delivery within the body.

Al-based nanorobots for drug delivery

Nanorobots are primarily composed of integrated cir-
cuits, sensors, power supplies, and secure data backups,
all maintained and managed through advanced com-
putational technologies such as Al [79]. These nanoro-
bots are programmed to perform a series of complex
tasks, including collision avoidance, target identification,
attachment to the target site, and eventual excretion from
the body. Recent advances in nano and microrobotic sys-
tems have enabled navigation to specific sites within the
body based on physiological cues such as pH gradients,
thereby enhancing therapeutic efficacy while minimiz-
ing systemic adverse effects [80, 81]. The development
of implantable nanorobots for the controlled delivery
of drugs and genes necessitates careful consideration of
multiple parameters, including dose regulation, sustained
and controlled release mechanisms [81]. The execution
of these functions relies heavily on automation, which
is governed by Al-based tools, such as neural networks
(NNs), fuzzy logic systems, and integrators [82]. In addi-
tion, microchip implants are employed not only for pro-
grammed drug release but also for tracking the precise
location of the implant within the body [83]. In paral-
lel, AI plays an equally critical role in rehabilitation,
where robotics and data-driven systems support patient
recovery.

Al and rehabilitation

Al has introduced transformative applications in the
field of rehabilitation, encompassing both physical
components (e.g., robotics) and virtual systems (e.g.,
informatics) [84]. In rehabilitation, ML is employed in
perioperative care, brain computer interfaces, myoelec-
tric control, and symbiotic neuroprosthetics [85]. It is
also applied in musculoskeletal care for analyzing patient
data, supporting clinical decision-making, and inter-
preting diagnostic imaging. For therapeutic purposes,
Al-based cognitive systems have been used to assess
rehabilitation exercises based on signals from rehabilita-
tion machines [86]. Smart home systems now assist with
daily activities and alert caregivers when needed, enhanc-
ing independent living [87]. Al-enabled robotic systems
could monitor and refine patient movements, aiding in
the efficient execution of physical tasks during rehabili-
tation [88]. Robotics also play a dual role in both reha-
bilitation and surgery. For instance, the Hybrid Assistive
Limb (HAL) exoskeleton supports patients recovering
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from lower limb impairments due to spinal cord inju-
ries or strokes [89]. These systems utilize surface sen-
sors to detect bioelectrical signals from the user’s body
and convert them into coordinated joint movements [90].
Devices such as HAL and ReWalk have shown promise
in restoring mobility and promoting independence in
individuals with paralysis [91]. ChatGPT offers person-
alized and interactive support to patients, helping them
stay motivated and involved throughout their rehabilita-
tion journey, it can be configured to suggest appropri-
ate exercises, monitor recovery milestones, and provide
constructive feedback to individuals healing from physi-
cal injuries [92]. Metaverse-based neurorehabilitation
combines advanced technologies, including Al-driven
systems for classifying gross motor function, rehabilita-
tion content used as motivational incentives, user-con-
trolled virtual avatars responding to weight shifts, and
deep learning-based movement evaluation. The success
of these rehabilitative technologies’ mirrors Al's grow-
ing importance in cancer care, where early detection and
treatment personalization are key.

Al in cancer

Al for colorectal cancer

Al particularly ML and DL, is transforming colorectal
cancer (CRC) care by enhancing screening, diagnosis,
treatment, and prognosis, as illustrated in Fig. 4 [93].
Traditional screening methods such as endoscopy and
fecal occult blood tests rely heavily on clinical exper-
tise and may miss early cases [94]. Al-assisted endos-
copy improves polyp detection and characterization by
analyzing large imaging data sets and electronic medi-
cal records, while predictive models using clinical and
molecular data help identify high-risk individuals for ear-
lier and more accurate screening. In diagnosis, Al-driven
image recognition significantly enhances the interpreta-
tion of radiographic and pathological images for CRC
staging [95]. DL algorithms reduce inter-observer vari-
ability and increase accuracy in detecting and classify-
ing tumors from colonoscopy, biopsy, and imaging data,
thereby supporting timely and precise diagnosis essential
for treatment planning [96]. For treatment, Al supports
optimization by predicting patient responses to surgery,
chemotherapy, and radiotherapy, enabling more person-
alized and effective interventions. In prognosis, AI-based
models integrate multidimensional clinical and molecu-
lar data to predict recurrence and estimate survival
more accurately than conventional statistical methods
[97]. Yamada et al. developed a real-time Al diagnostic
system that detected early CRC during endoscopy with
a sensitivity of 97.3%, specificity of 99.0%, and an AUC
of 0.975 [98]. Wan et al. applied ML methods to whole-
genome sequencing of plasma cell-free DNA for early
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Fig.4 Clinical applications of Al for colorectal cancer (CRC) [93]

CRC detection, analyzing gene-body Aligned reads from
546 patients with CRC and 271 controls [99]. Similarly,
Rathore et al. proposed a CRC detection system based on
a support vector machine radial basis function algorithm,
which classified normal and malignant biopsy images and
automatically determined malignancy grades [100].

Alin breast cancer

Breast cancer is the most common malignant tumor in
women worldwide [101]. Neoadjuvant therapy (NAT)
can improve treatment outcomes, but patient responses
vary considerably [102]. Conventional approaches for
evaluating NAT response, such as histopathology and
biomarker assessment, are limited in accuracy and effi-
ciency [103]. AI has advanced the prediction of NAT
efficacy by integrating digital pathology with computa-
tional models, allowing individualized evaluation before
systemic treatment, as shown in Fig. 5 [104]. Pathomics
extends beyond traditional H&E staining by incorporat-
ing molecular markers (ER, PR, HER2, Ki67, and PD-L1)
along with genomic and proteomic data that reflect
tumor sensitivity to therapies. By merging these diverse
features with Al researchers can more accurately predict

Aritifical Intelligence

Colorectal Cancer
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responses to neoadjuvant regimens in breast cancer
[104]. Several Al models demonstrate these applications
such as Cruz-Roa et al. who developed a convolutional
neural network (CNN) that classified invasive ductal car-
cinoma patches from whole-slide images (WSI) and esti-
mated infiltration using a ConvNet classifier [105]. While
Han et al. reported DL model with an average accuracy
of 93.2% across eight classes (four benign and four malig-
nant) [106]. Luo et al. proposed a deep learning-based
clinical risk stratification model for overall survival in
young women with breast cancer, integrating histologi-
cal features with clinical data to outperform conventional
prognostic tools [107]. Similarly, Huang et al. developed
a model to improve histological grading and predict
upstaging of atypical ductal hyperplasia and ductal car-
cinoma in situ from biopsies [108]. In addition, AI mod-
els analyzing pre- and post-treatment imaging features
help anticipate response to neoadjuvant chemotherapy,
recurrence risk, and survival outcomes. This predictive
capability enables clinicians to tailor therapy according
to tumor biology and expected treatment sensitivity, sup-
porting the transition toward more precise and personal-
ized breast cancer care.
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Al in lung cancer

Lung cancer is one of the most common malignancies
worldwide and remains the leading cause of cancer-
related mortality [109]. Immune checkpoint inhibitors
(ICIs) targeting PD-1, PD-L1, and CTLA-4 have dem-
onstrated significant efficacy in the treatment of non-
small cell lung cancer (NSCLC). However, only about
30% of patients are eligible for these therapies, and
immune-related adverse events remain a clinical chal-
lenge [110, 111]. Traditional evaluation methods are
often insufficient for predicting therapeutic benefit,
highlighting the need for more advanced approaches.
Al-based technologies addressing these challenges in
lung cancer immunotherapy are summarized in Fig. 6
[112]. AI has emerged as a powerful tool in lung can-
cer care, contributing to early detection, diagnosis,
and treatment optimization. ML model can distin-
guish benign from malignant nodules, monitor tumor
growth, and enhance bronchoscopic procedures by
improving diagnostic accuracy and lymph node sam-
pling yield [113]. The prediction of therapy efficacy
can be classified into direct predictions and indirect
predictions. Common approaches such as radiom-
ics, pathomics, and genomics can indirectly predict
the relationship between PD-L1, TMB, and other bio-
markers with survival and therapy efficacy. Conversely,

proteomics and laboratory inspection data are mainly
utilized for direct predictions. In pathology, Al auto-
mates tissue analysis, improving diagnostic accuracy,
classification of lung cancer subtypes, and prognostic
assessment [114]. Together, these applications sup-
port precision oncology by enabling individualized,
data-driven interventions that improve survival out-
comes. A predictive model for lymph vascular invasion
(LVI) and nodal involvement achieved a sensitivity of
75.8%, specificity of 67.6%, accuracy of 70.8%, and an
AUC of 0.77 [100]. Zhong et al. developed a DL model
using chest CT images from 3,096 patients with stage
I NSCLC, achieving an AUC of 0.82 for predicting N2
metastasis and enabling prognostic stratification [115].
Yan’s team trained a DL-based detection model on the
LUNA16 public database and validated it on the Anti-
PD-1_Lung data set, demonstrating the ability to pre-
dict immunotherapy response [110]. Similarly, Mu et
al. extracted features from PET-CT images obtained
before ICI treatment and developed a predictive model
for overall survival (OS) and progression-free survival
(PES) [116]. Beyond cancer care, Al applications are
also reshaping patient engagement and chronic disease
management, particularly through the development of
virtual health assistants that provide continuous moni-
toring, personalized guidance, and decision support.
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Fig. 6 Al-based technologies in lung cancer immunotherapy [112]

Development of virtual health assistants

Virtual Health Assistants (VHAs) are broadly defined as
Al-driven platforms that interact with patients to provide
health-related information, reminders, or support. The
development of VHAs has transformed patient engage-
ment and healthcare accessibility through the integra-
tion of advanced Al technologies, particularly NLP and
conversational Al [117]. Within this category, chatbots
represent a specific subset focused primarily on text- or
voice-based conversational exchanges, whereas more
advanced VHAs may include multimodal systems such
as voice-activated agents and relational agents designed
to establish trust and rapport with users. Early chatbot
implementations such as the Ada Health app employ
machine learning to assess symptoms and suggest poten-
tial diagnoses, with studies showing Alignment with phy-
sician recommendations in more than 70% of cases [118].
In contrast, voice-based VHAs like Amazon Alexa with
healthcare functionalities assist elderly patients in man-
aging chronic conditions, while relational agents explored
by Bickmore et al. are designed to simulate human-like
interaction, thereby improving user engagement and
long-term adherence [119]. De Choudhury et al. showed
that conversational agents can analyze linguistic patterns
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to detect early signs of depression or anxiety, enabling
timely interventions [120]. Similarly, Miner et al. high-
lighted their potential to support acute psychological
needs, such as guiding patients through relaxation tech-
niques during panic attacks [121]. Despite these benefits,
adoption rates remain uneven and are influenced by fac-
tors, such as age, digital literacy, cultural perceptions,
and levels of trust in Al systems. Patients often express
greater willingness to use VHAs when transparency,
data privacy, and human oversight are emphasized, while
skepticism persists regarding their clinical reliability and
ethical use. Current systems may misinterpret ambiguous
or context-specific language, struggle with complex med-
ical terminology, or fail to recognize cultural nuances,
which can undermine trust and safety. Cost-effective
assessments are necessary to ensure sustainable imple-
mentation, as the development and deployment of VHAs
can involve substantial financial investment.

Al integration with wearable devices

Modern wearable health technologies have progressed
from simple biometric trackers to intelligent monitor-
ing systems through the integration of AI [122]. These
devices now process continuous streams of physiological
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data to detect health patterns, predict risks, and deliver
personalized recommendations, establishing a proactive,
data-driven model of wellness management. They capture
key health metrics including cardiovascular function,
metabolic indicators, and behavioral patterns generating
longitudinal data sets essential for identifying trends and
enabling timely interventions [123]. Research highlights
their particular value in chronic disease management,
where real-time physiological monitoring enhances clini-
cal decision-making [124]. Al transforms wearables from
passive data collectors into active diagnostic assistants
through advanced signal processing and pattern recog-
nition. ML architectures extract clinically meaningful
insights from biometric streams, while DL models detect
subtle pathological signatures, such as arrhythmias in
ECG waveforms or early hypertension indicators in blood
pressure trends. Wearable technologies include smart-
watches, fitness trackers, and medical-grade sensors
capable of monitoring parameters, such as heart rate,
blood pressure, blood glucose, sleep quality, and physical
activity [125]. In diabetes care, AI-enhanced continuous
glucose monitors provide real-time glycemic feedback
and analyze behavioral data to optimize diet and activ-
ity, representing a major shift in self-management [126].
The integration of advanced sensors with ML promises
even deeper insights into health, positioning wearables
as central tools in the future of personalized healthcare
delivery. Building on these examples of Al-enabled per-
sonalized healthcare tools, Table 2 highlights landmark
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studies and clinically deployed AI systems across multi-
ple medical domains, illustrating how Al translates from
research into practical, real-world applications.

Challenges and existing solutions

Data integration and interoperability

Challenges

In smart healthcare, data heterogeneity hinders Al
adoption, because variations in structures, formats, and
standards complicate integration across departments,
institutions, and medical systems. This challenge spans
structured, semi-structured, and unstructured data, as
well as diverse modalities, such as text, images, audio,
and video, each requiring specialized processing. Even
within similar data types, inconsistencies like differing
disease coding systems add complexity. Addressing these
issues requires unified standards, robust cross-system
conversion tools, and advanced machine learning meth-
ods to harmonize data sets and support reliable, scalable
Al applications [137].

Existing solutions

Several strategies support data integration and interoper-
ability in healthcare. The Artificial Intelligence Modern
Data Platform (AIMDP) manages both structured and
unstructured information such as lab results, monitor-
ing data, and clinical notes to generate insights that guide
treatment decisions [138]. Data harmonization pipelines
convert diverse data sets into unified formats using the

Table 2 Different applications of Al in healthcare and pharmaceutical industry

Application Al Tool Contribution Ref

Diabetic Retinopathy Detection Dx-DR, EyeArt, and AEYE-DS FDA-approved autonomous Al system for diagnosing diabetic [127]
retinopathy

Breast Cancer Detection LYmph Node Assistant or LYNA Deep learning algorithm that significantly improves [128]
pathologists'sensitivity in detecting metastatic breast cancer
in sentinel lymph node biopsies

Robotic Surgery Assistance da Vinci Surgical System Advanced robotic platform enabling minimally invasive surgeries [129]
with enhanced precision and control

Brain tumour VGG16 architecture VGG16 architecture for medical image classification, specifically  [130]
in brain tumour and Alzheimer data set

Sepsis Early Warning Epic Sepsis Model Predictive analytics tool integrated into electronic medical [131]
records to identify sepsis onset earlier than traditional methods

Chest CT Al-Rad Companion (Siemens Healthineers®)  Analyzing chest CT scans and comparing the results [132]
against Radiologists’ evaluation

Drug Discovery AlphaFold (DeepMind) Al system capable of predicting protein structures with high [133]
accuracy, accelerating drug discovery processes

Brain Tumor Segmentation DeepMedic Deep learning-based method for automatic brain tumor seg- [134]
mentation in MRI scans, aiding neurosurgery planning

Personalized Medicine IBM Watson for Oncology Al-driven clinical decision support system providing cancer [135]
treatment recommendations based on patient data

Lung Nodule Detection InferRead CT Lung Al algorithms that automatically analyze medical images [136]

to detect lung nodules
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FHIR standard, ensuring consistency and usability for AI
applications, such as integrating blood glucose, weight,
and dietary records in diabetes management. Direct
adoption of Health Level 7 FHIR standards further ena-
bles seamless data modeling and exchange across institu-
tions, allowing oncology specialists in different hospitals
to access shared genetic, treatment, and clinical informa-
tion for coordinated, personalized cancer care [139, 140].

Large-scale data handling

Challenges

Healthcare is experiencing unprecedented data growth
from electronic health records (EHRs), wearable devices,
Internet of Things (IoT) technologies, imaging, clinical
notes, and genomics [141]. The scale, diversity, and veloc-
ity of these data sets often exceed the capabilities of tra-
ditional data management systems, creating difficulties in
storage, processing, and integration. Radiology depart-
ments, for instance, generate terabytes of imaging data
annually, while EHRs capture detailed patient histories
and treatment outcomes. Al provides powerful tools for
analysis, its success relies heavily on advances in underly-
ing data infrastructure [142]. Without scalable platforms,
efficient analytics, and robust governance, the potential
of Al in healthcare remains limited.

Existing solutions

To address these challenges, several approaches have
been proposed, including ML, agent-based, heuristic,
cloud-based, and hybrid mechanisms, though each poses
trade-offs in resource use, privacy, and complexity [143].
Distributed frameworks, such as Hadoop, using MapRe-
duce, have been applied in projects like the Mayo Clinic
to aggregate large-scale EHRs [144]. Apache Spark pro-
vides in-memory processing that accelerates genomic
analyses in initiatives such as Genomics England, though
it demands significant resources [145]. Data mining
techniques also support predictive modeling, as demon-
strated in the Diabetes Control and Complications Trial
(DCCT), where decision trees and neural networks were
applied to assess health risks and guide personalized care.

Real-time processing

Challenges

In smart healthcare, the rapid growth of IoT devices has
generated vast amounts of data requiring real-time pro-
cessing, which traditional cloud-based methods struggle
to handle due to latency issues. To address this, fog and
edge computing has emerged as effective solutions by
decentralizing data processing and bringing computa-
tion closer to the data source. Edge computing enables
immediate analytics at the device level, such as wearable
monitors analyzing patient vitals in real time. In contrast,
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fog computing provides additional storage and process-
ing at intermediate nodes, supporting larger tasks like
integrating data across a hospital network. Together,
these approaches reduce latency, improve efficiency, and
enhance the responsiveness of intelligent healthcare sys-
tems [146].

Existing solutions

To overcome these challenges, decentralized computing
approaches such as edge and fog computing have been
developed. Edge computing enables real-time analyt-
ics at or near devices, as in wearable monitors that pro-
cess patient vitals locally, while AI tasks can be divided
between reasoning at the edge and training in the cloud
[147]. Advanced frameworks like Smart-Edge-CoCaCo
further improve efficiency by coordinating communica-
tion, caching, and computation [148]. Fog computing,
positioned between edge and cloud, provides greater
storage and processing capacity, making it suitable for
hospital-wide data integration. When combined with
DL, fog systems have been applied in intelligent medical
monitoring, where physiological data are processed effi-
ciently to deliver timely and accurate health insights.

Model interpretability

Challenges

A major challenge in healthcare Al is the opacity of ML
and DL models, which often operate as “black boxes”
that provide predictions without revealing the reasoning
behind them. This lack of transparency undermines clini-
cal trust, complicates validation of Al-driven diagnoses,
and limits patient confidence in their care. For example,
an Al system may suggest a diagnosis without clarifying
which features influenced the result, reducing its reli-
ability in evidence-based practice. To address this, inter-
pretable models are needed to clarify decision-making
processes, highlight key features, and foster trust among
clinicians and patients [149].

Existing solutions

To overcome these challenges, Explainable Al (XAI)
techniques have been developed to reveal how models
generate predictions by identifying feature importance,
correlations, and reasoning pathways [150]. Common
methods include LIME, which approximates local model
behavior; SHAP, which quantifies feature contributions;
Grad-CAM, which highlights image regions influencing
predictions; and t-SNE, which visualizes high-dimen-
sional data. These tools are increasingly applied in health-
care for instance, Grad-CAM has been used to locate
areas of concern in retinal images for diabetic retinopa-
thy diagnosis, while SHAP helps interpret factors con-
tributing to patient readmission risks. By improving
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transparency and accountability, XAI enhances the usa-
bility, reliability, and acceptance of Al systems in clinical
practice [151].

Continuous learning and adaptability

Challenges

Al in healthcare faces difficulties in continuous learning,
as medical knowledge, treatments, and practices evolve
rapidly. Models trained on static data sets risk becoming
outdated, leading to declining accuracy over time [152].
The COVID-19 pandemic highlighted this limitation,
as diagnostic tools needed rapid adaptation to emerg-
ing variants and shifting clinical protocols. Similarly,
advances such as CAR-T therapies and robot-assisted
surgeries require Al systems to incorporate new evidence
to remain clinically relevant. Examples like IBM Watson
Health, which updates its knowledge base with current
research and trial data, underscore the importance of
regular model refinement to sustain accuracy, effective-
ness, and trustworthiness [153].

Existing solutions

To overcome these challenges, continuous learning tech-
niques have been introduced to enable AI models to
adapt to evolving data and practices [154]. Applications
include Dexcom’s glucose monitors adjusting insulin
doses in real time, BlueDot issuing early outbreak alerts
during COVID-19, and Tempus Labs refining genomic-
based therapies. A key obstacle is catastrophic forgetting,
where new knowledge disrupts previously learned infor-
mation. Strategies to address this include regularization,
replay, optimization, representation learning, and archi-
tecture-based methods [155]. Practical implementations,
such as pairing a k-NN classifier with a fixed pre-trained
feature extractor, help maintain adaptability while con-
trolling computational and storage demands, ensuring Al
systems remain reliable in dynamic healthcare environ-
ments [156].

Security of Al models

Challenges

Al in healthcare faces critical security threats across all
stages of operation, from data collection to preprocess-
ing, training, and inference. Sensitive medical data are
exposed to risks such as sensor spoofing during acquisi-
tion, scaling attacks during preprocessing, and adver-
sarial manipulations that subtly alter inputs to trigger
incorrect predictions or compromise privacy. These vul-
nerabilities undermine both patient safety and system
integrity. Protecting data sources from tampering and
enhancing model robustness against adversarial attacks
are, therefore, essential to building secure and trustwor-
thy Al-driven healthcare systems [157].
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Existing solutions

To overcome these challenges, multiple defensive strat-
egies have been developed. Remote monitoring sys-
tems, such as glucose and heart-rate sensors, employ
anomaly detection and data fusion with EHRs to iden-
tify falsified signals. In medical imaging, robust scal-
ing algorithms and median filters preserve diagnostic
accuracy by correcting artifacts and restoring image
quality. To counter adversarial attacks, techniques
such as adversarial retraining, data cleaning, and input
reconstruction improve model resilience, while genera-
tive adversarial networks (GANSs) are used to simulate
attacks and generate high-quality training images that
strengthen predictive performance [158]. Collectively,
these approaches enhance data integrity, diagnostic
precision, and the overall robustness of healthcare Al
systems.

Ethical Al design

Challenges

Ensuring ethical Al in healthcare requires integrating
fairness, safety, privacy, and accountability into systems
from the design stage rather than as afterthoughts [159].
A major challenge is determining responsibility when
errors occur, as opaque model decisions make it diffi-
cult to attribute liability between clinicians, developers,
and institutions. Bias also poses a significant risk, often
stemming from imbalanced data sets or flawed design,
which can reinforce healthcare inequalities. Furthermore,
managing sensitive patient data raises privacy concerns,
where breaches threaten both ethical and legal standards
[160]. These challenges underscore the need for fairness,
transparency, and accountability in building trustworthy
Al systems.

Existing solutions

To overcome these challenges, ethical Al frameworks
emphasize accountability, fairness, and privacy. Clear
responsibility guidelines are needed to define the roles
of developers, clinicians, and users in cases of errors.
Bias mitigation strategies include using diverse data sets,
conducting fairness audits, validating models across
populations, and educating stakeholders, with combined
approaches offering the most effective outcomes [161].
Patient privacy can be safeguarded through encryption,
anonymization, and differential privacy, while advanced
techniques such as federated learning enable collabora-
tive model training without sharing raw data. Homo-
morphic encryption further allows computations on
encrypted data sets, supporting secure data use. Col-
lectively, these approaches provide practical pathways



Fahim et al. European Journal of Medical Research (2025) 30:848

toward transparent, fair, and privacy-preserving Al in
healthcare [162].

Scalability

Challenges

Scalability remains a significant challenge in deploying
Al in healthcare, as models that perform well in small-
scale trials often struggle to maintain accuracy, speed,
and integration when applied across large national sys-
tems. The vast volumes of patient data, diverse medical
conditions, and the need for compatibility with differ-
ent healthcare IT infrastructures complicate large-scale
implementation. Addressing this requires advanced data
processing strategies and robust system architectures,
as demonstrated by the Mayo Clinic, which enhanced
its processing modules to manage nationwide medical
data efficiently, thereby improving diagnostic accuracy,
response time, and overall system reliability [163].

Existing solutions

Modular architecture and cloud computing are widely
adopted solutions to achieve scalability in healthcare
Al As demonstrated by Mount Sinai’s Modular Health
Information System, modular systems divide applications
into independent, task-specific units that can operate
concurrently, enhancing speed, efficiency, and adaptabil-
ity. Cloud platforms such as Google Cloud and Amazon
Web Services (AWS) support scalability by dynamically
adjusting computational and storage resources to meet
workload demands [164]. This enables efficient Handling
of large medical data sets while ensuring security and
reliability. In addition, new Benchmarking methodologies
such as BigDataBench 4.0 and Mystique have emerged
to replace traditional, non-scalable approaches, offering
realistic frameworks for evaluating the performance of
big data and Al systems in healthcare contexts [165].

Underserved and remote areas with limited connectivity
Challenges

Deploying Al in resource-limited and remote healthcare
settings faces major hurdles due to unstable or absent
internet connectivity, which restricts real-time analyt-
ics, data uploading, and system updates. To address these
challenges, offline AI models and portable devices have
been developed to function independently of continuous
network access [166]. For example, GE Healthcare’s port-
able ultrasound systems can perform local image analy-
sis and store results for later upload, enabling immediate
diagnoses even in low-connectivity regions. Such offline
Al solutions ensure reliable diagnostic support and make
healthcare more accessible in resource-constrained envi-
ronments [167].
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Existing solutions

Several strategies can complement edge and fog comput-
ing to enhance the deployment of Al in resource-lim-
ited healthcare environments. Offline AI models allow
devices like GE Healthcare’s portable ultrasound systems
to provide immediate diagnoses without internet access
by storing results locally [168]. Data compression tech-
niques, such as Gzip and Brotli, used in wearable devices
like Fitbit, reduce transmission demands in low-band-
width settings [169]. Lightweight AI models, including
MobileNet and TinyYOLO, enable real-time analysis on
low-power devices, with Huawei’s Atlas 200 accelerator
card exemplifying their effectiveness. In addition, low-
bandwidth optimization methods, such as adaptive com-
pression algorithms employed in drone-based disaster
relief, improve data transfer efficiency under unstable
network conditions [163]. These approaches enhance
the accessibility, reliability, and resilience of AI systems
in underserved and remote healthcare settings, helping
to bridge the gap between advanced digital technologies
and real-world clinical needs.

Bias in healthcare Al and mitigation strategies
Sources of bias

Data biases

Most areas of human research remain heavily biased
toward participants with a Western, Educated, Indus-
trialized, Rich, and Democratic (WEIRD) profile [170],
making them unrepresentative of the global population.
Since many data sets used to train Al are derived from
such studies, these biases are inherited by algorithms.
Some data set biases, like ethnicity in skin images or
gender in genetics, are easy to detect, while others, such
as socioeconomic status or sexual orientation, require
explicit metadata. Even seemingly unrelated metadata
can be crucial for identifying bias [171]. For instance,
neuroscience research has shown that socioeconomic
variables correlate with detectable differences in brain
structure and function [172]. To properly evaluate such
influences, future studies must incorporate standardized
metadata on factors that may introduce bias.

Algorithmic biases

When algorithms are trained on Biased data sets, they
tend to reinforce patterns from the dominant class. For
example, if a data set contains 80% Healthy and 20% dis-
eased images, an algorithm could achieve 80% accuracy
simply by labeling all samples as healthy. To prevent
misinterpretation, it is essential to establish objective
estimates of chance performance. One approach is per-
muting sample labels and retraining the algorithm to
generate “random” predictions, providing an empirical
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baseline for chance levels [173]. This should be comple-
mented with performance metrics robust to class imbal-
ance or classification methods that incorporate weighting
factors during optimization to account for under-repre-
sented classes [174].

Clinician interaction-related biases and resistance

The adoption of Al in healthcare relies on clinician trust,
yet resistance persists due to concerns over reliability,
workflow disruption, and medical mistrust shaped by
historical disparities. Alsheibani et al., using the technol-
ogy—organization—environment (TOE) framework, iden-
tified organizational, technological, and environmental
barriers to Al adoption and stressed leadership’s role in
overcoming them [175]. In addition, Lee and Rich empha-
sized perceptual and social factors, highlighting how his-
torical mistrust shapes clinicians’ acceptance of Al [176].
While Strohm et al. found that unclear integration pro-
cesses, variable trust, and uncertain clinical value limit
adoption in radiology [177]. Cadario et al. reported that
insufficient understanding of Al algorithms and blurred
decision-making roles drive resistance, recommend-
ing targeted education to strengthen engagement [178].
Clinician resistance is reinforced by biased AI systems,
making diverse data, regular audits, and continuous vali-
dation essential to build trust and ensure equitable use.

Patient interaction-related biases

Patient-related biases involve disparities in access and
interaction with AI systems. Privilege bias arises when
certain populations lack access to Al-enabled care or
the necessary technology, reinforcing existing inequi-
ties [179]. Informed mistrust reflects skepticism rooted
in historical healthcare injustices, leading some to avoid
care or conceal information. Agency bias results from
patients’ limited roles in AI development and evalua-
tion, meaning their needs and perspectives may be inad-
equately represented in Al-driven healthcare [180].

Strategies to mitigate bias

Data diversity and validation

Ensuring Al fairness starts with collecting and using
diverse, representative data sets that reflect the full spec-
trum of patient demographics, conditions, and health-
care settings. This approach reduces biases and improves
generalizability. Regular audits and independent valida-
tions by experts help detect and correct emerging biases.
Healthcare institutions should implement continuous Al
performance monitoring systems to adapt models over
time as clinical environments evolve [181].

Page 16 of 21

Education and awareness

Educating clinicians and patients about Al biases fos-
ters critical use and informed decision-making. Clini-
cians trained on potential biases avoid over reliance and
can better evaluate Al outputs, while informed patients
engage more effectively in their care discussions. Pro-
moting collaborative communication channels such as
workshops and forums supports ongoing learning, user
feedback, and iterative improvements to Al systems
[182].

Ethical and legal frameworks

Robust ethical and legal structures are essential for
protecting patient privacy, ensuring data security, and
defining clear accountability for Al-driven decisions [7].
Obtaining informed consent and complying with regu-
lations, such as HIPAA and GDPR safeguard data use.
Clear liability frameworks allocate responsibility among
clinicians, developers, and institutions. Enhancing algo-
rithm explainability promotes transparency and trust,
though awareness of explainability’s limitations is impor-
tant to mitigate confirmation biases [183].

Stakeholder collaboration

Mitigating Al biases demands coordinated efforts from
a wide range of stakeholders. Physicians provide essen-
tial clinical expertise, Al developers refine and optimize
algorithms, and policymakers establish clear regulatory
frameworks [159]. Patients and advocacy groups bring
forward community perspectives and equity concerns,
while professional associations define ethical standards.
Such multidisciplinary collaboration is crucial to ensure
that Al technologies are designed and implemented in a
responsible, fair, and effective manner across healthcare
systems [184].

Future perspectives and recommendations

The future of Al in healthcare will be driven by advances
in computational power, algorithmic innovation, and the
growing availability of multimodal data sets, including
medical imaging, genomics, proteomics, metabolomics,
and electronic health records. Integrating these data
streams will enable highly precise diagnoses, personal-
ized treatment planning, and dynamic, adaptive patient
care. Future systems may integrate multi-omics data sets
to model disease progression and simulate treatment
outcomes through “digital twins” virtual patient replicas
[185]. In drug discovery, advanced Al models, includ-
ing quantum-enhanced systems, are being developed to
simulate molecular behavior, predict off-target effects,
and streamline compound screening [186]. In clinical
practice, the evolution of explainable Al frameworks will
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be critical to ensure transparency, interpretability, and
trust among healthcare providers. Al is also expected to
reshape preventive medicine by identifying at-risk popu-
lations through predictive modeling and enabling early,
personalized interventions. In oncology, the future lies
in deeper Al-driven analyses of the tumor microenvi-
ronment, facilitating more individualized and adaptive
immunotherapies.

Looking ahead, Al will not only optimize clinical work-
flows but also reshape healthcare delivery systems on a
global scale. Lightweight and mobile-compatible Al solu-
tions designed for low- and middle-income countries
(LMICs) could reduce disparities in access to high-qual-
ity care, provided infrastructure and capacity-building
needs are met. Global collaborations, open-access data
initiatives, and coordinated funding mechanisms will
be central to ensuring that innovation is both equitable
and sustainable. However, to realize these opportunities,
several enabling conditions must be addressed, encom-
passing data diversity, regulatory frameworks, cost-effec-
tiveness, and collaborative governance.

First, research must prioritize the creation of diverse,
validated, and externally tested models to ensure fairness
and reliability across populations and health systems. Ini-
tiatives such as the UK Biobank and the National COVID
Cohort Collaborative (N3C) exemplify efforts to promote
data diversity, yet comparable frameworks remain limited
in many regions. The lack of standardized, multiethnic
data sets poses a major challenge, as biased training data
can perpetuate inequities in diagnosis and treatment. The
associated risk of non-generalizable or discriminatory
outcomes can be mitigated by mandating independent
benchmarking data sets, promoting international data-
sharing under secure privacy-preserving conditions,
and incorporating fairness audits into the development
pipeline.

Second, policy must establish adaptive ethical and
regulatory frameworks that balance innovation with
accountability and transparency. Notable efforts include
the U.S. FDA’s AI/ML-based SaMD Action Plan, the EU
Al Act, and the World Health Organization’s guidance
on ethics and governance of Al for health [187]. Despite
these advances, many countries lack clear or enforceable
guidelines, and the dynamic nature of learning systems
complicates regulatory oversight. The risk of fragmented
standards or regulatory lag can hinder both innovation
and patient safety. To mitigate this, international har-
monization platforms and regulatory sandboxes should
be established to test emerging technologies under con-
trolled conditions, ensuring safety while facilitating con-
tinuous adaptation [188].

Third, successful implementation will depend on prior-
itizing cost-effective, resource-efficient Al tools alongside
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workforce training and digital literacy. In LMICs, initia-
tives such as Al4Health Africa and PATH’s Digital Square
demonstrate the feasibility of low-cost, scalable AI appli-
cations, yet challenges persist in terms of infrastructure
limitations, workforce capacity, and sustainable funding.
Without targeted support, there is a risk of exacerbat-
ing the digital divide, leaving resource-limited settings
further behind. This can be mitigated through blended
investment models that combine public—private partner-
ships, international aid, and capacity-building programs
to strengthen infrastructure while simultaneously train-
ing healthcare professionals in Al literacy and clinical
integration [189, 190].

Finally, global collaboration will be essential to enable
scalable and equitable deployment of Al in healthcare.
Initiatives such as the Global Alliance for Genomics and
Health (GA4GH) and the International Cancer Genome
Consortium highlight the value of international data-
sharing, but significant barriers remain, including data
privacy concerns, interoperability issues, and geopo-
litical restrictions. The risk of data silos can limit gen-
eralizability and innovation. Federated learning and
privacy-preserving computation offer mitigation strate-
gies by allowing models to be trained on distributed data
without compromising patient confidentiality. Further-
more, international agreements on data governance and
equitable benefit-sharing will be essential to overcome
geopolitical divides and ensure global access to Al-driven
advances [191].

In summary, the transformative potential of Al in
healthcare is undeniable, but its realization will depend
on addressing critical enablers and barriers. By grounding
future developments in diverse data sets, adaptive poli-
cies, cost-effective implementation strategies, and inter-
national collaboration, Al can move from experimental
promise to sustainable integration in clinical practice. At
the same time, explicit recognition of the risk’s bias, regu-
latory gaps, inequitable access, and data fragmentation
together with proactive mitigation strategies will ensure
that AI evolves as a safe, ethical, and globally accessible
tool for improving human health.

Conclusion

Artificial intelligence is no longer a distant prospect but
an integral component of modern healthcare, transform-
ing diagnostics, drug discovery, precision medicine, and
health system operations. However, for Al to progress
from promising innovations to globally trusted solu-
tions, stakeholders must go beyond proof-of-concept
applications and focus on scalable, equity-driven imple-
mentation. Future success will depend on three critical
priorities: developing algorithms trained on diverse and
representative data sets; embedding cost-effectiveness
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and sustainability analyses into deployment strate-
gies; and establishing global regulatory frameworks that
ensure transparency, ethical responsibility, and patient
safety. Equally important is the translation of Al tools
into real-world clinical settings, particularly in low- and
middle-income countries, through lightweight, resource-
efficient models that address infrastructure gaps. Build-
ing clinician capacity through Al literacy and training
will be essential for ensuring human oversight in deci-
sion-making. By aligning technological innovation with
practical implementation, policy development, and
global collaboration, Al can transition from incremental
improvements to a reliable, equitable, and sustainable
foundation for healthcare worldwide.
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