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Abstract: Non-Invasive blood glucose monitoring using infrared (IR) light is considered to be a
useful and reliable tool for measuring blood sugar levels during daily activities. IR-based glucose
monitoring depends on the variant absorption levels of IR light waves by blood with high or low
levels of glucose solution. This paper introduces a low-cost finger probe to measure glucose based
on Arduino and embedding a Clarke error grid with fuzzy logic. An electronic blood glucose meter
was designed and implemented in a non-invasive and painless manner based on an infrared sensor.
The electrical signal expressing the level of glucose in the blood with a mathematical equation was
used to calibrate and map the physical and electrical values. The final numerical value was validated
with the Clarke error grid by implementing fuzzy logic (FL). The designed device was tested on
30 subjects with 15 diabetes subjects. The results show the high significance of results at points where
the FL was able to determine an error range of less than 10% of measured glucose within the same
range of the reference measurements. The proposed method of using FL with a Clarke error grid
gives more confident and precise outputs in cases of this kind of portable device.

Keywords: glucose monitoring; mid-infrared probe; fuzzy logic

1. Introduction

Diabetes mellitus is an intractable chronic disease in which abnormal glucose
metabolism occurs due to a partial or complete deficiency of insulin secreted by the pan-
creas [1]. Uncontrolled blood sugar levels or glycemia can lead to health complications for
patients. In fact, blood sugar levels in healthy people change before and after a meal. Gen-
erally, pre-meal glucose blood sugar concentration is 70–100 mg/dl. Diabetes is diagnosed
when blood glucose levels are approximately 126 mg/dL (7 mmol/L) during fasting and
200 mg/dL 2 h after eating [2]. Chronic hypoglycemia, a drop in blood sugar, can induce
diabetic coma if it drops too quickly. This can lead to brain damage and even death [3].

In order to prevent and avoid the complications associated with the change in the
amount of glucose in the blood and the proper monitoring of the development of the
dis-ease by health care personnel in order to control the disease effectively, patients need
to monitor their blood sugar regularly. In reality, the majority of patients cannot feel the
change in their glucose level unless, it is very high or very low, without taking a sample.
According to the American Diabetes Association, patients with type 1 undergoing intense
therapy should test their blood sugar 4–5 times a day, but those with type 2 require only
two measurements per day [4]. Unfortunately, the blood glucose monitoring devices that
are available in the market only offer a limited number of measurements per day, while
a diabetic needs continuous real-time glucose monitoring (CGM) to be informed in case
of severe hyperglycaemia or hypoglycaemia. This is especially true for insulin-dependent
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patients [5]. In addition to that, conventional glucometers require patients to prick their
finger each time a measurement is taken to obtain the amount of blood needed for the sensor
to work. These pricks are so painful and affect the fingers in the long term to such a degree
that some people reduce the number of measures just to avoid pain. Therefore, it is clear that
an ideal CGM device should be non-invasive, portable, accurate, inexpensive, easy to use,
and not require extensive calibration. Mid-infrared (IR) radiation, with a wavelength range
from 2500 nm to 25 µm, offers the highest selectivity for low-concentration compounds
in complex organic media. In principle, most approaches using mid-infrared rely on the
strong absorption of water in living tissue. Diffuse reflectance spectroscopy can access
glucose molecules from the epidermal layer, whereas photothermal detectors can provide
information from depths of 20–100 µm [6].

A number of portable non-invasive blood glucose monitors have been developed that
have demonstrated excellent blood glucose measurement and monitoring capabilities [7,8].
Most non-invasive devices require frequent calibration, but current research that works
on developing non-invasive devices is finding that the calibration process, its duration,
complexity, and effectiveness are detrimental and not periodically possible. In recent years,
great efforts have been made to reduce or even eliminate the frequency of calibration [9,10].
This paper presents a fuzzy logic-based calibration system to map the output voltage of IR
sensor and Arduino controller into reliable glucose concentration using Clarke error grid.
In this study, the fuzzy logic is responsible about estimating the error tolerance using the
output voltage from Arduino controller and the estimated glucose concentration.

2. Theoretical Background

As light rays traverse the tissues of the human body, they are subject to several
phenomena such as scattering, absorption, reflection, and refraction. These phenomena
provide evidence of irreconcilable refraction and reflection between the inside and outside
of the cell and through the fluid. Theoretically, the detection should remain nearly constant,
but it can change as the concentration of glucose molecules changes, and Pierre-Lambert’s
law states that the amount of light absorbed by a substance depends on the concentration
and length of the way the light passes through a medium. Increased absorption in tissues
containing many sugar molecules reduces optical density through those tissues compared
to less dense tissues. A wavelength of 940 nm has been found to be clinically acceptable as
it has low absorption and as the intensity of light passing through blood vessels is not lost
to the absorption of sugar molecules [6]. The resulting optical density relationship after
absorption is given by Equation (1):

I = I0e−µe f f L (1)

where:
I: is the corresponding optical density.
I0: is the transmitted optical density.
L: length of path crossed by light.
µe f f : is the coefficient of loss within tissue, defined by Equation (2):

µe f f =
√

2µa(µa + µ′s) (2)

A change in light density after absorption eventually appears as a change in voltage,
which leads to a change in the output shown as blood glucose percentage after being
processed and calibrated.
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3. Materials and Methods
3.1. Hardware Design
3.1.1. IR Transmitter and Receiver

We used infrared sensors to measure the sugar in blood vessels. These sensors have
the advantage of generating an analog voltage signal that corresponds to the intensity of
the received light. An infrared sensor generally consists of a sensor and a photoreceptor
and converts the receiving train of pulsed IR into an analogue output voltage that is later
used as input for the Arduino platform. The sender and receiver were obtained from the
TP808 photocoupler element. This is highly sensitive, consisting of infrared diodes and
NPN phototransistors with a high sensitivity indicated by 980 nm wavelength and 30 mW.

3.1.2. Amplifiers and Filters

The Lm358 amplifier was used for this purpose. A non-inverting amplifier formula
was used to calculate the gain from the following Equation (3):

G = 1 +
R2
R1

(3)

A passive low-pass filter RC (C = 10 uF, R = 330) was connected after the amplifier to
remove unwanted signals such as power supply noise.

3.1.3. Final Monitoring Circuit

The final monitoring circuit (Figure 1) was implemented using the previous IR cir-
cuit and Arduino Uno controller to convert the analog input from the IR sensor into
digital values.
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Figure 1. The implemented portable glucose monitor in this study.

3.2. Fuzzy Logic with CEG

The Clarke error grid, which is approved for clinical evaluation, was used as a marker
of differences between test glucose measurement techniques and intravenous blood glucose
baseline measurements [11]. This method uses a Cartesian scheme in which values are
predicted by displaying the method under examination on the y axis, and the values
received from the reference method on the x axis. The country region represents an ideal
match between the two, while the points below and above the line indicate the exaggerated
estimates and reduced actual values, respectively. Region-A (acceptable) represents glucose
values that deviate from the 20% reference value or lie within the blood glucose range
(<70 mg/dL). Values within this range are clinically correct, and thus correct clinical
diagnosis can be made on their basis. Region-B (benign defects) is above and below
region-A. This range represents values that deviate from the baseline after increasing by
20%. Values within zones A and B are clinically acceptable, but values within regions
are included. Regions-C and -E are potentially bad and their use can lead to clinically
significant errors.

In this study, the horizontal axes of CEG (Figure 2a) represent the output voltage of
Arduino based on preliminary calibration process. The main objective of this methodology
is to find the expected error tolerance of glucose concentration, which represents the
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confidence interval of the estimated glucose value. To estimate the error in the observed
glucose, FL (Figure 2b) was used to evaluate the output voltage from Arduino and the
average accuracy of measured voltage based on CEG’s areas (in scale of [0 to 1]).
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Figure 2. Proposed methodology of mapping the voltage-from-Arduino-to-glucose concentration
and estimating the error tolerance using FL: (a) Clarke grid using voltage output on horizontal axis;
(b) proposed fuzzy logic with two inputs of voltage and CGM and error output.

Fuzzy logic goes through several stages to reach a complete solution as follows:

1. Fuzzification: includes defining the membership functions (MF) for the input variables
to determine the degree of truth in each rule. The input contains two variables:
Arduino output and voltage accuracy based on the areas of CEG. The MFs of voltage
output are shown in (Figure 3a), where the MFs of output voltage are represented
with two triangle functions labelled as low glucose (LoGl) and high glucose (HiGl),
and two triangle functions named mild (MiGl) and moderate (MoGl) glucose. The
second input contains MFs with (A–E) labels that represent the areas of CEG. The
MFs of the output are identical to the second input but the real values, range between
0 and 100 as a percentage of error.

2. Inference: contains the fuzzy if–then rules. In this study, the fuzzy rules were built
based on the experimental observations of glucose and its coordinates on the areas of
Clarke grid. The used fuzzy rules include:
If Voltage is LoGl and CEG is A then Error is A.
If Voltage is LoGl and CEG is B then Error is B.

3. Defuzzification: the “centroid” that depends on the center of gravity is used to obtain
the final output, which is the error percentage of glucose concentration.
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4. Results and Discussion
4.1. Hardware Design

Non-invasive blood glucose monitoring using IR light is considered to represent a
useful and reliable tool for measuring blood sugar levels during daily activities. The IR-
based glucose monitoring principle depends on the variant absorption levels of IR light
waves by blood, with high or low levels of glucose solution.

To test our device, we conducted a preliminary study on 30 subjects, including
15 subjects with diabetes and 15 healthy controls. We measured their blood glucose levels
using our device and a reference device that uses the standard finger-prick method.

Our suggested system based on 940 nm IR light source seemed to be able to produce
detectable signals. As shown in Table 1, we can notice that the recorded signals seem to
vary between the subjects, and especially between normal (1.22–2.25 volts) and diabetic
(2.9–3.5 volts) subjects. These results concord with the study of Yunos et al. which preferred
the use of the IR principle to increase the sensitivity of the measurement and highlighted the
accuracy of this method in differentiating between different groups of possible patients [12].

Table 1. Glucose levels with the corresponding measured signal values of 15 subjects.

Glucose 1

(mg/dcl)
Output
(Volt) Age Glucose Using

Device 2 (mg/dcl) Gender Diabetes
(Neg/Pos) Fasting

110 1.55 16 116 M Neg No
115 1.75 24 121 M Neg No
104 1.25 24 96 M Neg No
167 3.2 65 158 F Pos Yes
126 2.15 23 138 M Neg No
128 2.25 23 125 M Neg No
120 2.05 23 113 F Neg No
103 1.22 25 99 M Neg Yes
109 1.53 23 102 F Neg No
115 1.74 24 109 M Neg No
162 3.01 45 175 F Pos Yes
170 3.4 50 161 M Pos Yes
155 2.9 48 168 M Pos Yes
172 3.45 45 166 F Pos Yes
175 3.5 58 178 M Pos Yes

1 using reference device. 2 calculated glucose using voltage output.

The final measurements of Table 1 are depicted on CEG as shown in Figure 4. The
values show a not fully satisfactory convergence in the “A” and “B” areas which illustrates
the error in estimated glucose level, thus making the utilization of FL necessary to compute
the expected tolerance.
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4.2. Glucose Measurement Using FL

As shown in Table 2, we notice that FL could be suggested for errors mapping and
validation. The calculated tolerance of glucose using FL output gives a more reliable
measurement of the monitor system by determining the expected error. The healthy
samples show a glucose level between 104 and 115 (mg/dcl) with an error of less than
±10%. The diabetic samples mostly show an error in glucose between ±5% and ±10%.

Table 2. A comparison of the measured glucose levels with the referential device and FL-based error
of 15 subjects.

Glucose 1 (mg/dcl) Output (Volt) Glucose Using
Device 2 (mg/dcl) Glucose Using FL 3

110 1.55 116 116 ± 6
115 1.75 121 121 ± 6
104 1.25 96 96 ± 8
167 3.2 158 158 ± 9
126 2.15 138 138 ± 12
128 2.25 125 125 ± 3
120 2.05 113 113 ± 7
103 1.22 99 99 ± 4
109 1.53 102 102 ± 7
115 1.74 109 109 ± 6
162 3.01 175 175 ± 13
170 3.4 161 161 ± 9
155 2.9 168 168 ± 13
172 3.45 166 166 ± 6
175 3.5 178 178 ± 3

1 using reference device. 2 calculated glucose using voltage output. 3 calculated glucose with possible error
using FL.

The results showed that the finger probe can measure glucose in a non-invasive and
painless manner with an acceptable accuracy and reliability. This result concords with the
finding of Mehmood et al. study which reported promising results with the use of fuzzy
logic in artificial pancreas control strategies [13].

In this study, we tried to introduce the principle of FL-based Clarke error grids. The
finger probe consisted of an infrared emitter and detector that were attached to the fingertip
and connected to an Arduino microcontroller. Many studies preferred the use of fuzzy logic
to perform glucose levels measurement [13,14]. The FL algorithm seemed to evaluate with
an accepted rate of accuracy and reliability of the glucose measurement using the Clarke
error grid. It provided a graphical method with which to compare different methods of
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glucose measurements. By dividing the measurement space into five zones, A, B, C, D, and
E, we were able to classify the measurements from the most accurate measurements to the
most erroneous measurements, leading to dangerous outcomes. Fuzzy logic represented a
flexible and realistic representation of the measurement errors. Based on the assignment of
membership to each zone of Clarke error grid, the FL algorithm was able to produce more
accurate glucose measurements [15].

5. Conclusions

The achievement of on-invasive blood glucose monitoring is a desirable goal for
many diabetic patients who need to measure their glucose levels frequently and accurately.
However, most of the existing methods are either invasive or require expensive and complex
equipment. Fuzzy logic is a mathematical technique that can handle uncertainty and
imprecision in data, and has been applied to various biomedical problems, such as artificial
pancreas control and glucose measurement using heart rate variability. FL can also be used
to design simple and robust measurement devices that can adapt to different physiological
conditions and environmental factors.

In this paper, we presented a contribution related to the use of FL measurements
to estimate the blood glucose level from the fingertip. To test our device, we conducted
a preliminary study on 30 subjects, including 15 subjects with diabetes and 15 healthy
controls. We measured their blood glucose levels using our device and a reference device
that uses the standard finger-prick method. We performed the measurements before and
after a meal, at intervals of 15 min, for a total of 12 measurements per subject. We then
compared the FL readings with the reference readings using the Clarke error grid analysis,
which is a widely used method to evaluate the accuracy of glucose meters.

The results show that our device has a high accuracy and reliability, with an error rate
of less than 3% according to the EGA. Out of 360 readings, 97.5% fell into zone A, 2.2%
into zone B, and 0.3% into zone C. No readings fell into zones D or E. This indicates that
our device can provide clinically accurate and acceptable estimates of blood glucose level
without causing any harm or discomfort to the user.

We conclude that our device is a promising alternative to invasive methods of blood
glucose monitoring, especially for diabetic patients who need frequent measurements. Our
device uses FL measurements to estimate the blood glucose level from the skin impedance,
which is a simple and non-invasive technique that can be implemented in a portable device.
Our device has high accuracy and reliability, with an error rate of less than 3% according to
the Clarke error grid analysis. This method of using FL with Clarke error grid seems to
provide a more confident and precise output for this type of portable device.
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