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Abstract: This study aims to develop an integrated approach for 3D lumbar vertebral biomodel
design and analysis, specifically targeting unilevel disc degeneration and the replacement of lumbar
artificial discs. Key objectives include improving existing design methods through 3D techniques,
inverse modeling, and an engineering biomodel preparation protocol. Additionally, the study
evaluates mechanical properties in the implantation area and between disc components to gauge
the effectiveness of artificial discs in restoring functional movement within the studied biological
model. The construction of a biological model representing the L3–L4 functional spinal unit was
based on measurements from radiographic images and computed tomography data obtained from
the study sample. The 3D finite element method in Ansys software (v. 19.2, ANSYS, Inc., Canonsburg,
PA, USA) was used to monitor the distribution of equivalent stress values within the core of the two
artificial discs and the behavior of vertebral bone components in the model. This approach enabled
the creation of personalized digital models tailored to the specific implantation requirements of each
patient. Stress analysis identified critical areas within the disc cores, suggesting potential design
modifications to optimize artificial disc performance, such as selectively increasing core thickness in
specific regions and considering adjustments during implantation. For example, preserving part of
the lateral annulus fibrosus from the degenerative disc and maintaining the anterior and posterior
longitudinal ligaments may play a crucial role in balancing the forces and moments experienced by
the lumbar section. This study provides valuable insights into the development of patient-specific
solutions for lumbar disc degeneration cases, with the potential for enhancing artificial disc design
and implantation techniques for improved functional outcomes.

Keywords: artificial lumbar disc; lumbar total disc replacement (LTDR); finite elements analysis
(FEA)

1. Introduction

Degenerative disc disease is a prevalent source of chronic low back pain, often necessi-
tating therapeutic intervention. A pivotal development in addressing this condition traces
back to 1960 when total disc replacement (TDR) systems were introduced, revolutionizing
treatment options with artificial instruments. TDR involves the replacement of a damaged
disc with an artificial disc (AID), aiming to restore disc height, correct segmental inclination,
and maintain range of motion. Recent studies have underscored the escalating significance
of TDR [1,2]. These studies encompass a spectrum of research methodologies, including
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experimental investigations and finite element analyses, the latter gaining prominence due
to its cost-effectiveness in deciphering the biomechanics of biological models.

The implantation of artificial discs presents a critical challenge to prosthetic experts.
The slightest positional error can lead to mechanical mismatches with spine movement,
particularly during lateral bending and axial rotation. Furthermore, cyclic loading con-
ditions can trigger bone osteolytic and inflammatory responses because of wear debris
generation [3].

TDR systems comprise bearing surfaces engineered to withstand loading without
fracturing, minimize friction and wear, and preserve an extended range of motion [4].
These TDR models can be systematically categorized based on design, fixation, friction
pairs, the location of the center of motion, and compatibility with MRI. Regarding design,
the regular disc exhibits six degrees of freedom, divided into three in displacement and
three in rotation. Consequently, we identified three distinct design types: Firstly, free design
(6 degrees of freedom). These are exemplified by the LP-ESP® product, which represents
the lumbar disk prosthesis-elastic spine pad (Spine Innovations, Mulhouse, France), and do
not necessitate perfect centering but exert greater pressure on the posterior joints. Secondly,
semi-constrained design (5 degrees of freedom) with a free core, such as Charité® (DePuy
Synthes, Raynham, MA, USA) and Mobidisc® (Zimmer Biomet, Warsaw, IN, USA); these
are stable designs where displacement occurs within the core and increases with the core’s
radius. Thirdly, constrained design (3 degrees of freedom) with a fixed core. As exemplified
by the Maverick® ProDisc-L® (Medtronic Ltd., Dublin, Ireland) these require exceptional
stability and hence perfect fixation [5].

Fixation is crucial for all prostheses, necessitating both short and long-term solu-
tions. At a macro level, fixation can be achieved through immediate fusion using stems,
keels, screws, macrostructures, or porous surfaces, with surface coatings facilitating os-
seointegration. Materials like hydroxyapatite, tricalcium phosphate, porous titanium, and
chromium-cobalt can enhance fixation. On a microscopic scale, long-term biological in-
corporation is indispensable to ensure the lifetime stability of the prosthesis, with certain
materials exhibiting superior performance in this regard, particularly for prostheses with
constrained designs that transmit greater forces to the vertebral endplates [6].

The choice of friction pair is pivotal, with four options available: metal/PE (Polyethy-
lene), ceramic/PE, metal/metal, and ceramic/ceramic. Notably, the metal/PE bearing,
which is the oldest bearing used in industrial prostheses, yields larger particles from PE
debris, while the metal/metal and ceramic/ceramic bearing debris generates fewer and
smaller particles [7]. Moreover, certain TDR models have a center of rotation located either
below or above the disc being replaced, with ceramic/PE and ceramic/ceramic models
being most compatible with magnetic resonance imaging (MRI) [8].

To determine the material properties of any prosthesis, it is imperative to ascertain the
anticipated requirements. In the context of total disc arthroplasty, these requirements center
around preserving or re-establishing functional disc motion while minimizing implant
wear and failure. Given that the intervertebral disc and surface joints collectively form
a three-joint system, it is crucial to ensure that the artificial disc replacement adequately
complements their functions. Additionally, considerations must be made for site-specific
mobility and load requirements, considering the disparities between lumbar and cervi-
cal disc replacements in terms of load capacity, natural motion patterns, and ranges of
motion [9].

Bearing materials must not only facilitate movement but also distribute loads with
low friction and high wear resistance. The risk of osteolysis, akin to that observed in hip
and knee replacements, is directly related to factors such as particle size, particle density,
surface chemistry, and the types of tissues in contact with the prosthesis. It is imperative
to explore specific bearing surfaces such as articulated joints (Metal-on-Plastic, MOP) and
newer bearings like MOM (Metal-on Metal) to mitigate osteoporosis’s severity [10].

The choice of implant material can significantly impact postoperative imaging. Tita-
nium and its alloys are generally superior to stainless steel and cobalt-chromium alloys,
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as they result in fewer artifacts during imaging. Given the continuous movement around
disc prostheses and the potential for subsequent degenerative and osseous changes, the
ability to conduct postoperative imaging is of growing concern as the use of such implants
expands [11].

The current landscape of materials used in total disc replacement predominantly in-
cludes cobalt-chromium alloys, titanium alloys, stainless steel, polyethylene, polyurethane,
and ceramics. Notably, ultra-high molecular weight polyethylene (UHMWPE) is the most
used polymeric material for orthopedic bearing surfaces [12].

Traditional treatments for degenerative disc diseases can be physically and finan-
cially taxing, with long-term results. Surgical options, such as spinal fusion surgery, are
widely accepted as efficacious interventions. However, they may come with high costs,
mobility limitations, decreased disc height, and the potential for damage in the adjacent
plane [13]. These factors can contribute to changes in the biomechanical environment and
spinal instability.

Clinical evaluations of artificial discs in a biological environment encompass physical
examinations, visual analog scale assessments for back pain (VAS), and the Oswestry
index (ODI). Radiological evaluations involve X-rays, CT (Computed Tomography) scans,
and MRI scans [14]. These radiographic parameters encompass intervertebral disc height
(IDH), range of motion (ROM), lumbar lordosis, and substitution site [15]. To gain insights
into the mechanical response, stress distribution, and deformations of lumbar prostheses
under static loads, numerical analysis methods based on finite elements are employed [16].
These analyses also encompass the evaluation of loading states during natural spinal
movements, such as axial rotation, flexion/extension, lateral bending, and axial loading [17].
Additionally, finite element analysis is leveraged to study the optimal design of the core
of lumbar intervertebral discs [5,13,14] and to explore the biomechanical effects of the
geometry of the ball-on-socket artificial disc in the lumbar section [10,16].

Numerical finite-element analysis methods have further been utilized in validation
studies to assess the preoperative modeling of total disc replacement surgery [18]. They
have been instrumental in predicting prosthetic wear for various materials [19] and have en-
abled comparative in vivo analyses of the prosthesis within the biological environment [20].

The current study is positioned within the realm of three-dimensional computer eval-
uation, offering an integrated methodology for assessing artificial discs dedicated to the
lumbar region. This methodology leverages mechanical design data obtained through
computerized tomography (CT) and three-dimensional mechanical design programs. Em-
ploying the 3D finite element method, the study aims to scrutinize the resulting model,
considering the impact of disc manufacturing materials and the behavior of bone material.
Ultimately, the study seeks to refine the process of disc implantation by methodically apply-
ing the replacement and comprehensively understanding the biomechanics of replacement
discs within the biological environment. Such an approach aligns with scientific standards
and precise techniques, with the goal of enhancing the clinical outcomes and investment in
this field.

2. Materials and Methods
2.1. Study Sample

The study sample comprises individuals suffering from chronic low back pain, with
varying degrees of unilevel disc degeneration. For this research, a representative model
was chosen—a 38-year-old male with disc degeneration at the (L3–L4) spinal level. The
selected sample exhibited normal vertebral bodies, the absence of advanced spinal diseases
(e.g., slipped vertebrae or disc collapse), and no history of prior spinal surgeries. Utilizing
a series of CT scans converted to a DICOM (Digital Imaging and Communications in
Medicine) file format, the (L3–L4) model was generated in Materialize MIMICS software.
Subsequently, the model was imported into SolidWorks CAD (Version 2019; Dassault
Systèmes SolidWorks Corporation, Vélizy-Villacoublay, France) in STEP file format, forming
the basis for the finalized element model used in this study.
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2.2. Model Generation

The intervertebral disc prostheses were meticulously designed to fit within the (L3–L4)
intervertebral space. The 3D models of both discs were crafted using SolidWorks (Version
2019; Dassault Systèmes SolidWorks Corporation, France), adhering to the dimensions of
the anteroposterior diameter (AP) and the mediolateral diameter (ML) of the endplates
of the study model. Specifically, ball-on-socket designs approved by the Food and Drug
Administration were selected with precise measurements, as depicted in Figure 1.
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2.3. Validation Study

Various regions were assigned to the vertebrae, including the upper and lower end-
plates, cancellous bone, cortical bone, and posterior bone (Figure 2).
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Figure 2. Regional assignments for vertebrae, including endplates, trabecular bone, cortical bone,
and posterior bone.

Additionally, seven essential ligaments connecting the vertebral bodies were incorpo-
rated into the model. These ligaments included the anterior longitudinal ligament (ALL),
posterior longitudinal ligament (PLL), ligament (LF), capsular ligament (CL), supraspinal
ligament (SS), interspinous ligament (IS), and transverse ligament (TL). Grooves were
created on the surfaces of the lower endplate of the vertebra (L3) and the upper endplate of
the vertebra (L4) along the mid-sagittal line to facilitate disc replacement. The ProDisc-L
disc was inserted in a posterior position with a (4 mm) gap, while the CHARITÉ disc was
positioned anteriorly [21].

The simulation included the removal of both anterior and posterior longitudinal
ligaments, replicating the procedure used during disc implantation. A critical aspect in
the finite element modeling process involved ensuring that the mesh elements’ density
and shape were appropriately optimized to attain solution convergence. Insufficient mesh
refinement can lead to inaccuracies, particularly when reducing the volume mesh, and
may result in the presence of small analysis elements along the edges and within narrow
anatomical features [22]. The upper and lower endplates of the ProDisc-L and CHARITÉ
discs were represented as rigid bodies in the model [23]. In our study, hexahedral elements
were utilized for constructing the mesh, while quadrilateral elements were employed for the
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core mesh [22]. The mesh sizes were systematically reduced, leading to finer discretization.
The convergence was monitored by assessing the changes in the results as the mesh was
refined. The convergence criteria were set such that the variation in the results reached less
than 1% with respect of the change in mesh size. This was achieved by carefully refining the
mesh until a consistent solution was obtained. Table 1 provides a detailed number of the
nodes and elements after refinement for the various components of the vertebrae and disc
models for both ProDisc and CHARITÉ implant cases. The resultant representative model
of the implant bio-environment was then exported to Ansys software (v. 19.2, ANSYS, Inc.,
Canonsburg, PA, USA) to conduct finite element analysis (FEA), as shown in Figure 3.

Table 1. Detailed element counts in vertebrae and disc models for ProDisc and CHARITÉ implant
cases, including ligaments and groove configurations.

Component Elements Nodes Component Elements Nodes

L3

Cortical bone 3135 6148

L3

Cortical bone 3299 6465
Cancellous bone 528 1062 Cancellous bone 372 787
Lower endplate1 991 2100 Lower endplate 2287 4582
Lower endplate2 1218 2469 Upper endplate 1215 2563
Upper endplate 1139 2391 Posterior bone 6643 12,227
Posterior bone 4885 9059 Cortical bone 2259 4560

L4

Cortical bone 2502 4947

L4

Cancellous bone 503 1022
Cancellous bone 556 1103 Lower endplate 1321 2801
Lower endplate 915 1966 Upper endplate 635 1438
Upper endplate1 459 1054 Posterior bone 5720 10,467
Upper endplate2 412 968 Core 29,517 48,609

Posterior bone 3584 6662 Lower endplate 373 1163

ProDisc-L
Core 2555 1521

CHARITÉ
Upper endplate 378 1196

Lower endplate 148 369 Cortical bone 3299 6465
Upper endplate 307 734 Cancellous bone 372 787
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Figure 3. Bio-environment modeling with ligaments and disc placement for finite element analysis
(FEA). (A) ProDisc model; (B) CHARITÉ model.

2.4. Boundary Conditions

A compressive load of 500 N was applied to the upper endplate of a vertebra (L3) to
simulate physiological compressive loading. The lower endplate of a vertebra (L4) was
fully fixed. To mimic the goal of total disc replacement (TDR) in restoring range of motion,
a moment of 7.5 N. m was applied at three anatomical levels to simulate flexion, extension,
lateral bending, and axial rotation movements. For the ProDisc-L disc, the core’s base
is connected to the lower endplate of the disc. The contact state is established between
the upper endplate of the disc and the core for ProDisc-L, and between the surfaces of
both the upper and lower endplate disc and the core for the CHARITÉ replacement. A
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Coulombic friction coefficient (µ = 0.083) typical for surface bearings (CoCr-UHMWPE) is
applied [24]. Additionally, complete bonding is set for the interface surfaces, simulating
bone growth within the implant area to represent complete fusion. A sliding connection
contact is established in the facet joints between the two vertebrae [22].

2.5. Materials Properties

The outcomes of the experiments rely on the physical, mechanical, and thermal
characteristics of the materials employed. It was assumed that both the bone structures
and the alternative discs used for the components under investigation exhibit isotropic
linear elasticity and homogeneity [25,26]. In Tables 2 and 3, the material properties of the
components included in this research are presented, derived from reference values from
previous studies [21,22,27,28].

Table 2. Material properties of investigated components based on assumed isotropic linear elasticity
and homogeneity.

Material Density
(g/cm3)

Young Modulus
(MPa) Poisson Ratio

Cortical bone 1.7 12,000 0.3
Cancellous bone 1.1 100 0.2
Posterior bone 1.4 3500 0.25

Upper and lower endplate 1.7 12,000 0.3
CoCrMo alloy 8.9 210,000 0.3

UHMWPE 0.94 1200 0.46

Table 3. Material properties of investigated ligaments.

Material Density
(g/cm3)

Young Modulus
(MPa) Poisson Ratio Cross-Section Area

(mm2)

LF 1 50 0.3 60
TL 1 50 0.3 10
IS 1 28 0.3 35.5
SS 1 28 0.3 35.5
CL 1 20 0.3 40

3. Results
3.1. Range of Motion

The range of motion (ROM) was meticulously examined in this study, representing
the total angular rotation of vertebra L3. We assessed the ROM in various movements,
including flexion/extension, lateral bending, and axial rotation. The findings, as illustrated
in Figure 4, are particularly noteworthy.

The analysis demonstrated a significant agreement between the FEM results and
those derived from a prior reference study examining conditions of normal lumbar move-
ment [29], which will be further elucidated in the subsequent discussion section. This
agreement underscores the efficacy of the ball-and-socket design of the two alternative
discs, ProDisc-L and CHARITÉ, in restoring motion. Notable observations for each pros-
thetic disc include:

ProDisc-L: This model exhibited a substantial increase in range of motion (1.8◦) during
axial rotation, exceeding the normal range by 1.5 times. The absence of initial movement
segment constraints during axial rotation, such as keeping part of the annulus fibrosus of
the damaged disc or anterior longitudinal ligaments, likely contributes to this increase [30].
Furthermore, the ProDisc-L prosthesis demonstrated an enhanced range of motion (2.7◦) in
extension compared to the normal range (1.125 times), possibly due to the complete removal
of the disc along with the anterior and posterior longitudinal ligaments. These ligaments
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are vital structures for countering extension moments, rendering extension movement in
the implant plane more flexible [31].

In contrast, the CHARITÉ model replicated the physiological behavior of the natural
disc, particularly concerning the instantaneous center of rotation [32].
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3.2. Stress Distribution

The mechanical properties of the bearing materials for both disc types significantly
influenced the expected lifespan of the replacement. The core material’s structural integrity
under mechanical loads was thoroughly investigated. Figures 5 and 6 depict the stress
distribution within the core material.

Appl. Mech. 2023, 4, FOR PEER REVIEW 8 
 

 

 
Figure 5. This image illustrates the distribution of von Mises stresses on the bearing surface of a 
UHMWPE core in the ProDisc-L model during various movements, including (A) flexion, (B) ex-
tension, (C) lateral bending, and (D) axial rotation. 

In the case of the ProDisc-L, forward loads were evenly distributed during flexion, 
owing to the large contact area. Extension movements, however, caused changes in the 
contact area, leading to differing stress pa erns. Conversely, the CHARITÉ disc exhibited 
maximum stress values around the circumferential edge of the core during all movements, 
particularly at the area of local minimum thickness, as shown in Figure 7. This area has 
been identified as a vulnerable site, potentially prone to plastic deformation, wear, and 
fracture [33]. 

Figure 5. This image illustrates the distribution of von Mises stresses on the bearing surface
of a UHMWPE core in the ProDisc-L model during various movements, including (A) flexion,
(B) extension, (C) lateral bending, and (D) axial rotation.



Appl. Mech. 2023, 4 1234Appl. Mech. 2023, 4, FOR PEER REVIEW 9 
 

 

 
Figure 6. The distribution of von Mises stresses on the bearing surface of a UHMWPE core in the 
CHARITÉ model under the same movements, including (A) flexion, (B) extension, (C) lateral bend-
ing, and (D) axial rotation. 

  

 
Figure 7. Damage to the edges of the core of the total disc replacement in retrieval studies [31] with 
permission from Elsevier (License Number: 5658170448214): (A,C) Polishing, plastic deformation, 
and transverse crack. (B) Transverse crack and edge fracture. 

Figure 8 illustrates the maximum von Mises stress values for both ProDisc-L and 
CHARITÉ during various physiological movements. Notably, the maximum von Mises 

Figure 6. The distribution of von Mises stresses on the bearing surface of a UHMWPE core in the
CHARITÉ model under the same movements, including (A) flexion, (B) extension, (C) lateral bending,
and (D) axial rotation.

In the case of the ProDisc-L, forward loads were evenly distributed during flexion,
owing to the large contact area. Extension movements, however, caused changes in the
contact area, leading to differing stress patterns. Conversely, the CHARITÉ disc exhibited
maximum stress values around the circumferential edge of the core during all movements,
particularly at the area of local minimum thickness, as shown in Figure 7. This area has
been identified as a vulnerable site, potentially prone to plastic deformation, wear, and
fracture [33].
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Figure 8 illustrates the maximum von Mises stress values for both ProDisc-L and
CHARITÉ during various physiological movements. Notably, the maximum von Mises
stress on the CHARITÉ disc reached 68 MPa at a depth of 0.01 mm during axial rotation.
This level of stress may pose a risk to the disc under the applied loading conditions, as
previous research has reported a yield stress value for high molecular weight polyethylene
of 21 MPa [34].
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studied section.

In contrast, all FEM results for the ProDisc-L core remained below this yield stress
value, with a maximum stress value of 15.6 MPa during flexion, ensuring that the core will
not deform. To prevent stress concentration and potential damage in the CHARITÉ disc
core, reinforcing specific areas or increasing thickness is advisable.

3.3. Bone Fracture Analysis

The study delved into the ability of bone to withstand fractures under the influence
of applied kinematics during movement. This resilience is determined by the mechanical
properties of bone, its composite structure, and organization.

When analyzing the stress–strain behavior of bone material, it became apparent that
the performance of bone varies in both elastic and plastic regions [35]. Elastic regions
exhibit stress storage and flexibility at lower-level strains, while the plastic region leads
to bone material deformation and the possibility of damage, such as the formation of
microcracks (Figure 9).
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Cortical bone, stronger but less flexible, can endure higher stresses and lower strains
before failure. On the other hand, the porous nature of cancellous bone seems to provide
greater flexibility but bears lower stress levels with significantly higher strains before
failure [36]. The von Mises yield criterion, based on the distortion energy theory, was
employed to investigate the stresses occurring on the cortical side of the bone, which
behaves as a ductile material [37].

The yield stress values for bone material when tested by compression were found to
exceed the minimum stress required for bone in general and cortical bone. Consequently,
the bone material in both vertebrae of the studied models exhibited no plastic deformation
in all motion tests [38].

4. Discussion

The evaluation of range of motion (ROM) in this study has provided valuable insights
into the performance of ProDisc-L and CHARITÉ prosthetic discs, with a specific emphasis
on the validation aspect assessed through several comparisons with the relevant clinical
and experimental studies. The analysis not only demonstrated a substantial agreement
between the finite element method (FEM) results and those from a preceding reference
study on normal lumbar movement conditions but also contributed to the validation of our
findings compared to previous experimental and clinical investigations.

In general, both prosthetic discs exhibited the ability to maintain range of motion
across all three main levels, showcasing the motion-restoring capacity inherent in the ball-
on-socket design employed in the ProDisc-L and CHARITÉ discs. This observation aligns
with findings from a study on the Dynesys system, which highlighted the system’s impact
on intervertebral rotations, intersegmental ROM, neutral zone (NZ), and three-dimensional
helical axis of motion (HAM) [29]. In concordance with the findings of the Dynesys system
which caused a reduction in ROM values and restoration of NZ values, the ProDisc-L
discs seemed to demonstrate a 1.8◦ increase in the range of motion, indicating a 1.5-fold
improvement, notably in the axial rotation. This increase may be attributed to the absence
of initial segment constraints during axial rotation, as supported by previous studies [30].

However, the ProDisc-L also exhibited an increase in range of motion (2.7◦) in exten-
sion, which was 1.125 times greater than the normal range. This outcome may be attributed
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to the complete removal of the entire disc along with the anterior and posterior longitudinal
ligaments, structures essential for countering extension moments. The absence of these
structures rendered the extension movement in the implant plane more flexible. Addition-
ally, the ProDisc-L displayed a reduced range of motion in flexion compared to the natural
disc, possibly due to differences in the momentary axis of rotation during movement in the
sagittal plane.

In contrast, the CHARITÉ model replicated the physiological behavior of the natural
disc, particularly concerning the instantaneous center of rotation [32]. The study empha-
sized the critical role of bearing materials for the expected life of disc replacements, with the
CHARITÉ disc experiencing the highest stress values at the circumferential edge of the disc
core during various movements. This vulnerable area, identified in a previous study [33],
raises concerns about potential issues such as plastic deformation, wear, and fractures.

The study also conducted bone fracture analysis, exploring the mechanical properties
of bone material under varying loads. Both the ProDisc-L and CHARITÉ discs generated
stress values below the yield point of bone material, ensuring that bone material in the
studied models did not deform plastically during the various motion tests. Importantly, the
stress values were well below the minimum stress field that bone, especially cortical bone,
can tolerate, emphasizing the safety and integrity of the materials used in the prosthetic
discs [35,37]. These findings underscore the importance of selecting appropriate bearing
materials and highlight the potential of prosthetic discs, such as CHARITÉ and ProDisc-L,
to effectively restore motion while preserving the structural integrity of adjacent bone
tissues [38].

5. Conclusions

This study has pioneered an integrated approach that combines 3D biological mod-
eling and finite element interpretation techniques to address lumbar disc degeneration.
By employing advanced 3D design and analysis programs tailored to patient-specific
needs, our focus has been on minimizing the maximum stresses on artificial discs. This
holistic approach aims to extend implantation periods, enhance functional efficiency, and
mitigate the risks of disc collapse, thereby preserving the vital anatomical environment.
The numerical analysis conducted in this study has provided valuable insights into the
impact of various materials and designs on disc stability, considering ROM variations in the
addition to the diverse stresses and loads associated with specific clinical cases. While this
comprehensive assessment has identified potential weak points, it has also paved the way
for the development of reinforcement strategies and adjustments to the proposed model.

However, it is crucial to recognize the limitations of this study. The outcomes are based
on computational modeling and simulations, necessitating real-world clinical validation to
confirm these results. Moreover, further research is imperative to evaluate the long-term
performance and biocompatibility of the proposed models in actual patient scenarios. We
advocate for the widespread adoption of this approach in the creation of numerical biomod-
els and prosthetics, anticipating its potential to revolutionize patient-specific treatments for
disc degeneration.

The findings of this study hold promise for improving patient outcomes, emphasizing
the advantages of 3D numerical analysis, including high spatial accuracy, time and resource
efficiency, and adaptability during the design and manufacturing phases. As the field
of medical prosthetics advances, this approach presents exciting prospects for enhancing
patient care and optimizing artificial disc replacements. We remain optimistic that future
research will refine and expand upon these findings, ultimately leading to improved
treatments for individuals suffering from lumbar disc degeneration.
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