WOUND DRESSINGS UPLOADED WITH MYRTLE BERRIES EXTRACT AND NIGELLA SATIVA HONEY

Article in Universal Journal of Pharmaceutical Research - May 2018
DOI: 10.22270/ujpr.v3i2.R3

CITATIONS
0

READS
293

2 authors:

Z. Wissam
Al Andalus University for Medical Sciences
50 PUBLICATIONS, 81 CITATIONS
SEE PROFILE

Maher Hammadi
Faculty of pharmacy, Tartous university
1 PUBLICATION, 0 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Improvement of phenolic content, antioxidant and antimicrobial activity of Syrian myrtle berries (Myrtus communis L.) hydro-alcoholic extracts using flavoring additives. View project

Extraction of oleuropein from olive leaves and their microencapsulation for the preparation of functional food View project
INTRODUCTION

A wound is defined as a simple or severe break in an anatomical structure such as the skin and can outspread to other tissues¹. Infection occurs in wounds due to competition with the host natural immune system and causes a delay in wound healing. The most common causes of infection are Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pyogenes, and some Proteus, Clostridium, and Colliform species. The efficacy of topical solutions, creams or ointments for drug delivery to the wound is very low as they lead to severe infections and antibiotic resistance. Starch based impregnated gauze containing either N. sativa honey, myrtle berries hydro-alcoholic extract or a combination were prepared. There efficacy against both P. aeruginosa and S. aureus isolated from chronic wounds. N. sativa honey mixture was the most potent against P. aeruginosa with an inhibition zone diameter of 18.1±0.3 mm, while the myrtle berries hydro-alcoholic extract mixture was the most potent against S. aureus with an inhibition zone diameter of 18.4±0.5 mm. The prepared impregnated gauzes deliver a moist environment that helps wounds epithelialize more rapidly. In addition, honey and myrtle berries hydro-alcoholic extract provide antibacterial and anti-inflammatory properties that will accelerate the healing process of wounds.

Keywords: Staphylococcus aureus; Pseudomonas aeruginosa; N. sativa honey; myrtle berries hydro-alcoholic extract; starch based impregnated gauzes.
medicine, a decoction of leaves and fruits is used externally for wound healing12. Traditionally, honey has been considered to have therapeutic properties since ancient times13. Results of different researches had previously proved the efficacy of honey against different types of microbes depending on many factors such as the type, natural structure of the nectar and the environmental conditions14. Bacterial resistance is less likely to develop as a result of treatment with honey because of the composition of honey which contains a number of different components responsible for the antimicrobial efficacy15. This includes pH, sugar content, hydrogen peroxide levels and the presence of some phytochemicals, mainly phenolic compounds including phenolic acids and flavonoids16. Honey has also been proved to accelerate wound healing by offering antibacterial activity, maintaining a moist wound environment that promotes healing, and providing a protective barrier to prevent infection17,18. Many researchers report that honey could be an effective dressing for the treatment of different skin infections resulting from burns and wounds19,20. In this study, the anti-bacterial effect of impregnated sterile gauzes containing myrtle berries extract and Nigella sativa honey was studied on both P. aeruginosa and S. aureus.

MATERIALS AND METHOD

1.1: Myrtle extract preparation

Myrtle berries were collected from a mountainous region of Syria. 2 g of dried powders of myrtle berries were extracted by maceration in 100 ml of ethanol 50% for 2 hours21. The ethanol was evaporated using a rotary evaporator.

1.2: Starch based gel preparation

A starch based gel containing 20 g of starch, 20 ml of glycerol, and 100 ml of water was prepared first22. The solution was gently stirred until starch dissolved. It was then homogenized, heated for about 15 min at 80-85°C and finally cooled to room temperature.

Three different mixtures were prepared using 10 ml of the starch based gel with 10 ml of N. sativa honey (purchased directly from beekeepers), 10 ml of myrtle extract or a combination of them in 1:1 ratio.

N. sativa honey was used in this study as it was found to be more potent on P. aeruginosa and S. aureus than other types of honey23,24.

1.3: Impregnated gauze preparation

Standard sterile gauze 3 inch by 3 inch was dipped into different starch based mixtures till saturation and the excess solution was extruded by applying pressure. The hardening of the gel on the gauze was accomplished by refrigeration then the prepared impregnated gauzes were placed in sterile envelopes.

1.4: Antibacterial efficacy

P. aeruginosa and S. aureus were isolated from chronic wounds and tested for their antibiotic sensitivity. Antimicrobial activity test was carried out using agar diffusion method on Muller Hinton Agar plates25. Bacterial isolates were spread on plates, and then a hole was punched into plates with a diameter of 6 mm. One hundred micro liter of each mixture was introduced into the hole and the plates were incubated for 24 h at 37°C. The average of three cross sectional points of inhibition zone diameter was taken as the inhibition zone.

RESULTS AND DISCUSSION

Application of conventional antibiotics is becoming more difficult due to several problems especially antimicrobial resistance and side effects. This has reinforced the use of natural alternative agents to replace synthetic antimicrobials26. Accordingly, extensive research has been carried out in order to assess the antimicrobial activity of the natural extracts and different types of honey which showed the ability to inhibit the growth of various pathogenic microorganisms27.

The antibiotic sensitivities of both P. aeruginosa and S. aureus isolated from chronic wounds are presented in Tables 1 and 2. Table 3 shows the results of inhibition zone diameter of different prepared starch based mixtures under study microorganisms. Accordingly, the N. sativa honey mixture was the most potent against P. aeruginosa with an inhibition zone diameter of 18.1±0.3 mm similar to that of imipenem and ceftazidime, while the myrtle berries hydro-alcoholic extract mixture was the most potent against S. aureus with an inhibition zone diameter of 18.4±0.5 mm similar to that of tetracycline and chloramphenicol. The positive and potent effect of myrtle extract on S. aureus in this study is consistent with the results obtained by Taheri et al. who had previously found that the concentration of 80 mg/ml of myrtle hydro-alcoholic extract showed the greatest effect on the S. aureus bacterium with an inhibition zone diameter of 20.4±0.3 mm. Same results were obtained by Salvagnini who studied the effect of the oil and ethanolic extract of myrtle on different strains and reported that the ethanolic extract of myrtle has a positive effect on S. aureus with 12 mm inhibition zone28,29. Ghalmhsynyan Najjar et al. acknowledged that the activity of myrtle extract on S. aureus strain is partly due to the stimulation of free radicals30.

The efficacy of honey against different types of microbes has been previously proved in different researches23,24,31 and bacterial resistance is less likely to develop as a result of the composition of honey which contains a number of different components15. Results of different researchers proved that honey was more potent against P. aeruginosa than S. aureus which is consistent with our results. Boateng and Nso Diunase found that the zone of inhibition values for P. aeruginosa ranged from 26.3±0.6 mm for Manuka honey to 34±2.0 mm for Cameroon standard honey, whilst the zones of inhibition against S. aureus was not more than 18.7 ± 1.2 mm for Manuka honey32.

As shown in Table 3, the combination between N. sativa honey and myrtle berries extract was effective against both P. aeruginosa and S. aureus with a diameter zone of inhibition of 13.06±0.4 mm and 15.6±0.2 mm, respectively. It is important to care properly for wound, whether it is a minor cut or a major incision. Dressings are a part of this process and are designed to be in contact with the
wound, help in faster re-epithelialization, collagen synthesis and promote angiogenesis.\(^3\) Bioactive wound dressings incorporated with antimicrobials are one of the most important modern wound dressings developed to play an important role in healing process compared with traditional wound dressings used only for covering the wound\(^4\). Commercially available antimicrobial dressings include honey-impregnated dressings, iodine-impregnated dressings, silver-impregnated dressings and chlorhexidine gauze dressing.\(^5\)

Misirlioglu et al. used honey-impregnated gauze for the treatment of a split-thickness skin graft donor site. The gauze showed a lower sense of pain and faster epithelialization time than paraffin gauzes and saline-soaked gauzes.\(^6\) In the UK, dressings impregnated with Manuka honey were successfully used in the wound care clinic.\(^7\)

Subrahmanyam et al. has shown in a randomized clinical study that residual scars decrease in patients treated with honey-impregnated gauze compared with those treated with amniotic membrane.\(^8\) It was also proved that wounds dressed with honey-impregnated gauze showed earlier healing compared with silver sulfadiazene dressing in burn patients.\(^9\)

As presented in Figure 1, the prepared impregnated gauzes contain either N. sativa honey, myrtle berries hydro-alcoholic extract or a combination. The gauze can be cut to fit around the wound due to their soft elastic properties which provides easy application and removal without any damage. They also deliver active compounds with anti-inflammatory and antimicrobial properties; and play an active role in the wound healing process. Starch based mixtures provide a moist environment in addition to a soothing and cooling effect.

CONCLUSION

Simple woven gauze although commonly used, they are known to be painful to remove, destructive to newly formed granulation tissue and provoke infection by leaving some fibers behind in the wound bed. A wide range of more appropriate dressings ensuring appropriate healing process has been available for a number of years such as medicated dressings. Plant extracts with antimicrobial and healing properties in number of years such as medicated dressings. Plant appropriate healing process has been available for a wide range of more appropriate dressings ensuring by leaving some fibers behind in the wound bed. A newly formed granulation tissue and provoke infection a

REFERENCES

| Table 1: Antibiotic sensitivities of P. aeruginosa isolate. |
|---------------------------------|---------------------------------|----------------|
| **Antibiotic name** | **Inhibition zone diameter (mm)** | **Result** |
| Levofloxacin | 29 | Sensitive |
| Cefipime | 26 | Sensitive |
| Ceftazidime | 20 | Sensitive |
| Imipenem | 20 | Sensitive |
| Gentamycin | 15 | Intermediate|
| Doxycycline | 15 | Intermediate|
| Ceftiraxone | 10 | Resistant |
| Amoxicillin+ Clavulanic acid | No inhibition zone | Resistant |

| Table 2: Antibiotic sensitivities of S. aureus isolate. |
|---------------------------------|---------------------------------|----------------|
| **Antibiotic name** | **Inhibition zone diameter (mm)** | **Result** |
| Imipenem | 31 | Sensitive |
| Levofloxacin | 30 | Sensitive |
| Erythromycin | 23 | Sensitive |
| Meropenem | 22 | Sensitive |
| Tetracycline | 20 | Sensitive |
| Chloramphenicol | 19 | Intermediate|
| Cefotaxime | 13 | Resistant |
| Linezolid | 11 | Resistant |
| Cefazolin | 10 | Resistant |
| Cefaclor | No inhibition zone | Resistant |
| Ceftriaxone | No inhibition zone | Resistant |
| Cefdinir | No inhibition zone | Resistant |

ISSN: 2456-8058 Volume 3, Issue 2, 2018
Table 3: Sensitivity of *P. aeruginosa* and *S. aureus* isolates against different mixtures.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Inhibition zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. aeruginosa</td>
</tr>
<tr>
<td>N. sativa honey</td>
<td>18.1±0.3</td>
</tr>
<tr>
<td>Myrtle extract</td>
<td>15.3±0.2</td>
</tr>
<tr>
<td>Myrtle extract with honey 1:1</td>
<td>13.6±0.4</td>
</tr>
</tbody>
</table>

Figure 1: Impregnated gauze.

a. Impregnated gauze with 10 ml *N. sativa* honey.
b. Impregnated gauze with 10 ml myrtle berries hydro-alcoholic extract.
c. Impregnated gauze with 10 ml *N. sativa* honey and myrtle berries hydro-alcoholic extract mixture (1:1).